一个多参数持久同源的内核

Q2 Engineering
René Corbet , Ulderico Fugacci , Michael Kerber , Claudia Landi , Bei Wang
{"title":"一个多参数持久同源的内核","authors":"René Corbet ,&nbsp;Ulderico Fugacci ,&nbsp;Michael Kerber ,&nbsp;Claudia Landi ,&nbsp;Bei Wang","doi":"10.1016/j.cagx.2019.100005","DOIUrl":null,"url":null,"abstract":"<div><p>Topological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent homology have been established to connect persistent homology with machine learning techniques with applicability on shape analysis, recognition and classification. We contribute a kernel construction for multi-parameter persistence by integrating a one-parameter kernel weighted along straight lines. We prove that our kernel is stable and efficiently computable, which establishes a theoretical connection between topological data analysis and machine learning for multivariate data analysis.</p></div>","PeriodicalId":52283,"journal":{"name":"Computers and Graphics: X","volume":"2 ","pages":"Article 100005"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cagx.2019.100005","citationCount":"37","resultStr":"{\"title\":\"A kernel for multi-parameter persistent homology\",\"authors\":\"René Corbet ,&nbsp;Ulderico Fugacci ,&nbsp;Michael Kerber ,&nbsp;Claudia Landi ,&nbsp;Bei Wang\",\"doi\":\"10.1016/j.cagx.2019.100005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Topological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent homology have been established to connect persistent homology with machine learning techniques with applicability on shape analysis, recognition and classification. We contribute a kernel construction for multi-parameter persistence by integrating a one-parameter kernel weighted along straight lines. We prove that our kernel is stable and efficiently computable, which establishes a theoretical connection between topological data analysis and machine learning for multivariate data analysis.</p></div>\",\"PeriodicalId\":52283,\"journal\":{\"name\":\"Computers and Graphics: X\",\"volume\":\"2 \",\"pages\":\"Article 100005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.cagx.2019.100005\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Graphics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590148619300056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Graphics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590148619300056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 37

摘要

拓扑数据分析及其主要方法——持久同调,为计算高维和噪声数据集的拓扑信息提供了一个工具箱。建立了单参数持久同调的核函数,将持久同调与机器学习技术相结合,在形状分析、识别和分类等方面具有广泛的应用。我们通过对沿直线加权的单参数核进行积分,给出了多参数持久性的核结构。我们证明了我们的核是稳定和高效可计算的,这在拓扑数据分析和多变量数据分析的机器学习之间建立了理论联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A kernel for multi-parameter persistent homology

A kernel for multi-parameter persistent homology

Topological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent homology have been established to connect persistent homology with machine learning techniques with applicability on shape analysis, recognition and classification. We contribute a kernel construction for multi-parameter persistence by integrating a one-parameter kernel weighted along straight lines. We prove that our kernel is stable and efficiently computable, which establishes a theoretical connection between topological data analysis and machine learning for multivariate data analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Graphics: X
Computers and Graphics: X Engineering-Engineering (all)
CiteScore
3.30
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信