用于脑部疾病分类的深度学习融合模型:应用于区分精神分裂症和自闭症谱系障碍。

Yuhui Du, Bang Li, Yuliang Hou, Vince D Calhoun
{"title":"用于脑部疾病分类的深度学习融合模型:应用于区分精神分裂症和自闭症谱系障碍。","authors":"Yuhui Du, Bang Li, Yuliang Hou, Vince D Calhoun","doi":"10.1145/3388440.3412478","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning has shown a great promise in classifying brain disorders due to its powerful ability in learning optimal features by nonlinear transformation. However, given the high-dimension property of neuroimaging data, how to jointly exploit complementary information from multimodal neuroimaging data in deep learning is difficult. In this paper, we propose a novel multilevel convolutional neural network (CNN) fusion method that can effectively combine different types of neuroimage-derived features. Importantly, we incorporate a sequential feature selection into the CNN model to increase the feature interpretability. To evaluate our method, we classified two symptom-related brain disorders using large-sample multi-site data from 335 schizophrenia (SZ) patients and 380 autism spectrum disorder (ASD) patients within a cross-validation procedure. Brain functional networks, functional network connectivity, and brain structural morphology were employed to provide possible features. As expected, our fusion method outperformed the CNN model using only single type of features, as our method yielded higher classification accuracy (with mean accuracy >85%) and was more reliable across multiple runs in differentiating the two groups. We found that the default mode, cognitive control, and subcortical regions contributed more in their distinction. Taken together, our method provides an effective means to fuse multimodal features for the diagnosis of different psychiatric and neurological disorders.</p>","PeriodicalId":72044,"journal":{"name":"ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758676/pdf/nihms-1654686.pdf","citationCount":"0","resultStr":"{\"title\":\"A deep learning fusion model for brain disorder classification: Application to distinguishing schizophrenia and autism spectrum disorder.\",\"authors\":\"Yuhui Du, Bang Li, Yuliang Hou, Vince D Calhoun\",\"doi\":\"10.1145/3388440.3412478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning has shown a great promise in classifying brain disorders due to its powerful ability in learning optimal features by nonlinear transformation. However, given the high-dimension property of neuroimaging data, how to jointly exploit complementary information from multimodal neuroimaging data in deep learning is difficult. In this paper, we propose a novel multilevel convolutional neural network (CNN) fusion method that can effectively combine different types of neuroimage-derived features. Importantly, we incorporate a sequential feature selection into the CNN model to increase the feature interpretability. To evaluate our method, we classified two symptom-related brain disorders using large-sample multi-site data from 335 schizophrenia (SZ) patients and 380 autism spectrum disorder (ASD) patients within a cross-validation procedure. Brain functional networks, functional network connectivity, and brain structural morphology were employed to provide possible features. As expected, our fusion method outperformed the CNN model using only single type of features, as our method yielded higher classification accuracy (with mean accuracy >85%) and was more reliable across multiple runs in differentiating the two groups. We found that the default mode, cognitive control, and subcortical regions contributed more in their distinction. Taken together, our method provides an effective means to fuse multimodal features for the diagnosis of different psychiatric and neurological disorders.</p>\",\"PeriodicalId\":72044,\"journal\":{\"name\":\"ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758676/pdf/nihms-1654686.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3388440.3412478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388440.3412478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习通过非线性变换学习最优特征的强大能力,使其在脑疾病分类方面大有可为。然而,鉴于神经影像数据的高维特性,如何在深度学习中联合利用多模态神经影像数据的互补信息是一个难题。在本文中,我们提出了一种新颖的多级卷积神经网络(CNN)融合方法,它能有效地结合不同类型的神经图像特征。重要的是,我们在 CNN 模型中加入了顺序特征选择,以提高特征的可解释性。为了评估我们的方法,我们使用来自 335 名精神分裂症(SZ)患者和 380 名自闭症谱系障碍(ASD)患者的大样本多站点数据,在交叉验证程序中对两种症状相关的脑部疾病进行了分类。大脑功能网络、功能网络连通性和大脑结构形态被用来提供可能的特征。不出所料,我们的融合方法优于只使用单一类型特征的 CNN 模型,因为我们的方法获得了更高的分类准确率(平均准确率大于 85%),并且在多次运行中区分两组的可靠性更高。我们发现,默认模式、认知控制和皮层下区域对它们的区分贡献更大。综上所述,我们的方法为融合多模态特征诊断不同的精神和神经疾病提供了有效手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep learning fusion model for brain disorder classification: Application to distinguishing schizophrenia and autism spectrum disorder.

Deep learning has shown a great promise in classifying brain disorders due to its powerful ability in learning optimal features by nonlinear transformation. However, given the high-dimension property of neuroimaging data, how to jointly exploit complementary information from multimodal neuroimaging data in deep learning is difficult. In this paper, we propose a novel multilevel convolutional neural network (CNN) fusion method that can effectively combine different types of neuroimage-derived features. Importantly, we incorporate a sequential feature selection into the CNN model to increase the feature interpretability. To evaluate our method, we classified two symptom-related brain disorders using large-sample multi-site data from 335 schizophrenia (SZ) patients and 380 autism spectrum disorder (ASD) patients within a cross-validation procedure. Brain functional networks, functional network connectivity, and brain structural morphology were employed to provide possible features. As expected, our fusion method outperformed the CNN model using only single type of features, as our method yielded higher classification accuracy (with mean accuracy >85%) and was more reliable across multiple runs in differentiating the two groups. We found that the default mode, cognitive control, and subcortical regions contributed more in their distinction. Taken together, our method provides an effective means to fuse multimodal features for the diagnosis of different psychiatric and neurological disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信