低剂量β-胡萝卜素调节成心肌细胞炎症、减少Caspase信号传导并与自噬激活相关

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ronny Lesmana, Inez Felia Yusuf, Hanna Goenawan, Achadiyani Achadiyani, Astrid Feinisa Khairani, Siti Nur Fatimah, Unang Supratman
{"title":"低剂量β-胡萝卜素调节成心肌细胞炎症、减少Caspase信号传导并与自噬激活相关","authors":"Ronny Lesmana, Inez Felia Yusuf, Hanna Goenawan, Achadiyani Achadiyani, Astrid Feinisa Khairani, Siti Nur Fatimah, Unang Supratman","doi":"10.12659/MSMBR.928648","DOIUrl":null,"url":null,"abstract":"Background Excessive reactive oxygen species (ROS) stimulate mitochondrial damage that causes degenerative diseases such as cardiovascular disease (CVD). β-carotene (BC), a natural antioxidant able to counteract free radicals, acts as a cytoprotective agent. However, knowledge of the role of BC on cardiomyoblasts is limited. In this study, we explored its role on COX4, Tom20, Nfr1, Nrf2, Nf-κB, LC3, p62, caspase 3, and caspase 9 and its association with cardiomyoblast viability and survival. Material/Methods H9C2 cell lines were seeded, cultivated until 90% to 100% confluency, and treated with various doses of BC: 10 μM, 1 μM, 0.1 μM, and 0.01 μM. After 24 h, the cells were harvested, lyzed, and tested for specific related protein expressions from each dose. Results Low-dose BC induced autophagy most effectively at 1 μM, 0.1 μM, and 0.01 μM, as indicated by a decrease of LC3II and p62 levels. We observed that Nf-κB protein levels were suppressed; Nrf2 was stimulated, but Nrf1 was not altered significantly. Further, low-dose BC might stimulate cell viability by reducing apoptotic signals of caspase 3 and 9. Notably, low-dose BC also showed potential to increase Tom20 protein levels. Conclusions Low-dose BC supplementation shows beneficial effects, especially at 0.01 μM, by reducing inflammation through the suppression of Nf-κB and increase of Nrf2 level. Autophagy as a cellular maintenance mechanism was also stimulated, and the amount of the mitochondria marker Tom20 increased. Taken together, results showed that specific low-dose BC is effective and might improve cell viability by stimulating autophagy, inhibiting proinflammatory factors, and suppressing apoptosis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ac/fd/medscimonitbasicres-26-e928648.PMC7780889.pdf","citationCount":"7","resultStr":"{\"title\":\"Low Dose of β-Carotene Regulates Inflammation, Reduces Caspase Signaling, and Correlates with Autophagy Activation in Cardiomyoblast Cell Lines.\",\"authors\":\"Ronny Lesmana, Inez Felia Yusuf, Hanna Goenawan, Achadiyani Achadiyani, Astrid Feinisa Khairani, Siti Nur Fatimah, Unang Supratman\",\"doi\":\"10.12659/MSMBR.928648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background Excessive reactive oxygen species (ROS) stimulate mitochondrial damage that causes degenerative diseases such as cardiovascular disease (CVD). β-carotene (BC), a natural antioxidant able to counteract free radicals, acts as a cytoprotective agent. However, knowledge of the role of BC on cardiomyoblasts is limited. In this study, we explored its role on COX4, Tom20, Nfr1, Nrf2, Nf-κB, LC3, p62, caspase 3, and caspase 9 and its association with cardiomyoblast viability and survival. Material/Methods H9C2 cell lines were seeded, cultivated until 90% to 100% confluency, and treated with various doses of BC: 10 μM, 1 μM, 0.1 μM, and 0.01 μM. After 24 h, the cells were harvested, lyzed, and tested for specific related protein expressions from each dose. Results Low-dose BC induced autophagy most effectively at 1 μM, 0.1 μM, and 0.01 μM, as indicated by a decrease of LC3II and p62 levels. We observed that Nf-κB protein levels were suppressed; Nrf2 was stimulated, but Nrf1 was not altered significantly. Further, low-dose BC might stimulate cell viability by reducing apoptotic signals of caspase 3 and 9. Notably, low-dose BC also showed potential to increase Tom20 protein levels. Conclusions Low-dose BC supplementation shows beneficial effects, especially at 0.01 μM, by reducing inflammation through the suppression of Nf-κB and increase of Nrf2 level. Autophagy as a cellular maintenance mechanism was also stimulated, and the amount of the mitochondria marker Tom20 increased. Taken together, results showed that specific low-dose BC is effective and might improve cell viability by stimulating autophagy, inhibiting proinflammatory factors, and suppressing apoptosis.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ac/fd/medscimonitbasicres-26-e928648.PMC7780889.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12659/MSMBR.928648\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12659/MSMBR.928648","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

过多的活性氧(ROS)刺激线粒体损伤,导致退行性疾病,如心血管疾病(CVD)。ß-胡萝卜素(BC)是一种天然抗氧化剂,能够抵抗自由基,起到细胞保护剂的作用。然而,关于BC对心肌细胞的作用的知识是有限的。在这项研究中,我们探讨了它在COX4、Tom20、Nfr1、Nrf2、Nf-kappaB、LC3、p62、caspase 3和caspase 9中的作用及其与成心肌细胞活力和生存的关系。材料和方法将H9C2细胞系播种,培养至90%至100%的融合度,并用不同剂量的BC处理:10µM, 1µM, 0.1µM和0.01µM。24小时后,收获细胞,分析细胞,并检测每次剂量的特异性相关蛋白表达。结果低剂量BC在1µM、0.1µM和0.01µM时诱导自噬最有效,LC3II和p62水平降低。我们观察到Nf-kB蛋白水平被抑制;Nrf2受到刺激,但Nrf1无明显改变。此外,低剂量的BC可能通过减少caspase 3和9的凋亡信号来刺激细胞活力。值得注意的是,低剂量的BC也显示出增加Tom20蛋白水平的潜力。结论低剂量BC可通过抑制Nf-kappaB和增加Nrf2水平来减轻炎症,特别是在0.01µM时。自噬作为一种细胞维持机制也受到刺激,线粒体标记物Tom20的数量增加。综上所述,结果表明,特定低剂量的BC是有效的,可能通过刺激自噬、抑制促炎因子和抑制细胞凋亡来提高细胞活力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Low Dose of β-Carotene Regulates Inflammation, Reduces Caspase Signaling, and Correlates with Autophagy Activation in Cardiomyoblast Cell Lines.

Low Dose of β-Carotene Regulates Inflammation, Reduces Caspase Signaling, and Correlates with Autophagy Activation in Cardiomyoblast Cell Lines.

Low Dose of β-Carotene Regulates Inflammation, Reduces Caspase Signaling, and Correlates with Autophagy Activation in Cardiomyoblast Cell Lines.

Low Dose of β-Carotene Regulates Inflammation, Reduces Caspase Signaling, and Correlates with Autophagy Activation in Cardiomyoblast Cell Lines.
Background Excessive reactive oxygen species (ROS) stimulate mitochondrial damage that causes degenerative diseases such as cardiovascular disease (CVD). β-carotene (BC), a natural antioxidant able to counteract free radicals, acts as a cytoprotective agent. However, knowledge of the role of BC on cardiomyoblasts is limited. In this study, we explored its role on COX4, Tom20, Nfr1, Nrf2, Nf-κB, LC3, p62, caspase 3, and caspase 9 and its association with cardiomyoblast viability and survival. Material/Methods H9C2 cell lines were seeded, cultivated until 90% to 100% confluency, and treated with various doses of BC: 10 μM, 1 μM, 0.1 μM, and 0.01 μM. After 24 h, the cells were harvested, lyzed, and tested for specific related protein expressions from each dose. Results Low-dose BC induced autophagy most effectively at 1 μM, 0.1 μM, and 0.01 μM, as indicated by a decrease of LC3II and p62 levels. We observed that Nf-κB protein levels were suppressed; Nrf2 was stimulated, but Nrf1 was not altered significantly. Further, low-dose BC might stimulate cell viability by reducing apoptotic signals of caspase 3 and 9. Notably, low-dose BC also showed potential to increase Tom20 protein levels. Conclusions Low-dose BC supplementation shows beneficial effects, especially at 0.01 μM, by reducing inflammation through the suppression of Nf-κB and increase of Nrf2 level. Autophagy as a cellular maintenance mechanism was also stimulated, and the amount of the mitochondria marker Tom20 increased. Taken together, results showed that specific low-dose BC is effective and might improve cell viability by stimulating autophagy, inhibiting proinflammatory factors, and suppressing apoptosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信