基于最小化多样性措施的比例自适应滤波器,以促进稀疏性。

Ching-Hua Lee, Bhaskar D Rao, Harinath Garudadri
{"title":"基于最小化多样性措施的比例自适应滤波器,以促进稀疏性。","authors":"Ching-Hua Lee, Bhaskar D Rao, Harinath Garudadri","doi":"10.1109/ieeeconf44664.2019.9048716","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a novel way of deriving proportionate adaptive filters is proposed based on diversity measure minimization using the iterative reweighting techniques well-known in the sparse signal recovery (SSR) area. The resulting least mean square (LMS)-type and normalized LMS (NLMS)-type sparse adaptive filtering algorithms can incorporate various diversity measures that have proved effective in SSR. Furthermore, by setting the regularization coefficient of the diversity measure term to zero in the resulting algorithms, Sparsity promoting LMS (SLMS) and Sparsity promoting NLMS (SNLMS) are introduced, which exploit but do not strictly enforce the sparsity of the system response if it already exists. Moreover, unlike most existing proportionate algorithms that design the step-size control factors based on heuristics, our SSR-based framework leads to designing the factors in a more systematic way. Simulation results are presented to demonstrate the convergence behavior of the derived algorithms for systems with different sparsity levels.</p>","PeriodicalId":72692,"journal":{"name":"Conference record. Asilomar Conference on Signals, Systems & Computers","volume":"2019 ","pages":"769-773"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7676632/pdf/nihms-1644992.pdf","citationCount":"0","resultStr":"{\"title\":\"Proportionate Adaptive Filters Based on Minimizing Diversity Measures for Promoting Sparsity.\",\"authors\":\"Ching-Hua Lee, Bhaskar D Rao, Harinath Garudadri\",\"doi\":\"10.1109/ieeeconf44664.2019.9048716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, a novel way of deriving proportionate adaptive filters is proposed based on diversity measure minimization using the iterative reweighting techniques well-known in the sparse signal recovery (SSR) area. The resulting least mean square (LMS)-type and normalized LMS (NLMS)-type sparse adaptive filtering algorithms can incorporate various diversity measures that have proved effective in SSR. Furthermore, by setting the regularization coefficient of the diversity measure term to zero in the resulting algorithms, Sparsity promoting LMS (SLMS) and Sparsity promoting NLMS (SNLMS) are introduced, which exploit but do not strictly enforce the sparsity of the system response if it already exists. Moreover, unlike most existing proportionate algorithms that design the step-size control factors based on heuristics, our SSR-based framework leads to designing the factors in a more systematic way. Simulation results are presented to demonstrate the convergence behavior of the derived algorithms for systems with different sparsity levels.</p>\",\"PeriodicalId\":72692,\"journal\":{\"name\":\"Conference record. Asilomar Conference on Signals, Systems & Computers\",\"volume\":\"2019 \",\"pages\":\"769-773\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7676632/pdf/nihms-1644992.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference record. Asilomar Conference on Signals, Systems & Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ieeeconf44664.2019.9048716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/3/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference record. Asilomar Conference on Signals, Systems & Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ieeeconf44664.2019.9048716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用稀疏信号恢复(SSR)领域著名的迭代重权技术,在分集度最小化的基础上,提出了一种推导比例自适应滤波器的新方法。由此产生的最小均方(LMS)型和归一化 LMS(NLMS)型稀疏自适应滤波算法,可以包含在 SSR 中被证明有效的各种多样性度量。此外,通过将算法中多样性度量项的正则化系数设为零,还引入了稀疏性促进 LMS(SLMS)和稀疏性促进 NLMS(SNLMS)算法,这两种算法可以利用系统响应的稀疏性,但并不严格强制系统响应的稀疏性(如果稀疏性已经存在)。此外,与大多数基于启发式设计步长控制因子的现有比例算法不同,我们基于 SSR 的框架能以更系统的方式设计因子。仿真结果展示了衍生算法在不同稀疏程度系统中的收敛行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proportionate Adaptive Filters Based on Minimizing Diversity Measures for Promoting Sparsity.

In this paper, a novel way of deriving proportionate adaptive filters is proposed based on diversity measure minimization using the iterative reweighting techniques well-known in the sparse signal recovery (SSR) area. The resulting least mean square (LMS)-type and normalized LMS (NLMS)-type sparse adaptive filtering algorithms can incorporate various diversity measures that have proved effective in SSR. Furthermore, by setting the regularization coefficient of the diversity measure term to zero in the resulting algorithms, Sparsity promoting LMS (SLMS) and Sparsity promoting NLMS (SNLMS) are introduced, which exploit but do not strictly enforce the sparsity of the system response if it already exists. Moreover, unlike most existing proportionate algorithms that design the step-size control factors based on heuristics, our SSR-based framework leads to designing the factors in a more systematic way. Simulation results are presented to demonstrate the convergence behavior of the derived algorithms for systems with different sparsity levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信