用深度学习建模道德决策。

4区 计算机科学 Q1 Arts and Humanities
Christopher Wiedeman, Ge Wang, Uwe Kruger
{"title":"用深度学习建模道德决策。","authors":"Christopher Wiedeman,&nbsp;Ge Wang,&nbsp;Uwe Kruger","doi":"10.1186/s42492-020-00063-9","DOIUrl":null,"url":null,"abstract":"<p><p>One example of an artificial intelligence ethical dilemma is the autonomous vehicle situation presented by Massachusetts Institute of Technology researchers in the Moral Machine Experiment. To solve such dilemmas, the MIT researchers used a classic statistical method known as the hierarchical Bayesian (HB) model. This paper builds upon previous work for modeling moral decision making, applies a deep learning method to learn human ethics in this context, and compares it to the HB approach. These methods were tested to predict moral decisions of simulated populations of Moral Machine participants. Overall, test results indicate that deep neural networks can be effective in learning the group morality of a population through observation, and outperform the Bayesian model in the cases of model mismatches.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":"3 1","pages":"27"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42492-020-00063-9","citationCount":"6","resultStr":"{\"title\":\"Modeling of moral decisions with deep learning.\",\"authors\":\"Christopher Wiedeman,&nbsp;Ge Wang,&nbsp;Uwe Kruger\",\"doi\":\"10.1186/s42492-020-00063-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One example of an artificial intelligence ethical dilemma is the autonomous vehicle situation presented by Massachusetts Institute of Technology researchers in the Moral Machine Experiment. To solve such dilemmas, the MIT researchers used a classic statistical method known as the hierarchical Bayesian (HB) model. This paper builds upon previous work for modeling moral decision making, applies a deep learning method to learn human ethics in this context, and compares it to the HB approach. These methods were tested to predict moral decisions of simulated populations of Moral Machine participants. Overall, test results indicate that deep neural networks can be effective in learning the group morality of a population through observation, and outperform the Bayesian model in the cases of model mismatches.</p>\",\"PeriodicalId\":52384,\"journal\":{\"name\":\"Visual Computing for Industry, Biomedicine, and Art\",\"volume\":\"3 1\",\"pages\":\"27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s42492-020-00063-9\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Computing for Industry, Biomedicine, and Art\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-020-00063-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-020-00063-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 6

摘要

人工智能伦理困境的一个例子是麻省理工学院的研究人员在道德机器实验中提出的自动驾驶汽车的情况。为了解决这样的困境,麻省理工学院的研究人员使用了一种被称为层次贝叶斯(HB)模型的经典统计方法。本文以先前的道德决策建模工作为基础,应用深度学习方法在这种情况下学习人类伦理,并将其与HB方法进行比较。这些方法被用来预测道德机器参与者的模拟群体的道德决策。总体而言,测试结果表明,深度神经网络可以通过观察有效地学习群体的群体道德,并且在模型不匹配的情况下优于贝叶斯模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modeling of moral decisions with deep learning.

Modeling of moral decisions with deep learning.

Modeling of moral decisions with deep learning.

Modeling of moral decisions with deep learning.

One example of an artificial intelligence ethical dilemma is the autonomous vehicle situation presented by Massachusetts Institute of Technology researchers in the Moral Machine Experiment. To solve such dilemmas, the MIT researchers used a classic statistical method known as the hierarchical Bayesian (HB) model. This paper builds upon previous work for modeling moral decision making, applies a deep learning method to learn human ethics in this context, and compares it to the HB approach. These methods were tested to predict moral decisions of simulated populations of Moral Machine participants. Overall, test results indicate that deep neural networks can be effective in learning the group morality of a population through observation, and outperform the Bayesian model in the cases of model mismatches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Computing for Industry, Biomedicine, and Art
Visual Computing for Industry, Biomedicine, and Art Arts and Humanities-Visual Arts and Performing Arts
CiteScore
5.60
自引率
0.00%
发文量
28
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信