评估人群过早死亡风险的预测算法研究方案:过早死亡率人口风险工具 (PreMPoRT)。

Laura C Rosella, Meghan O'Neill, Stacey Fisher, Mackenzie Hurst, Lori Diemert, Kathy Kornas, Andy Hong, Douglas G Manuel
{"title":"评估人群过早死亡风险的预测算法研究方案:过早死亡率人口风险工具 (PreMPoRT)。","authors":"Laura C Rosella, Meghan O'Neill, Stacey Fisher, Mackenzie Hurst, Lori Diemert, Kathy Kornas, Andy Hong, Douglas G Manuel","doi":"10.1186/s41512-020-00086-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Premature mortality is an important population health indicator used to assess health system functioning and to identify areas in need of health system intervention. Predicting the future incidence of premature mortality in the population can facilitate initiatives that promote equitable health policies and effective delivery of public health services. This study protocol proposes the development and validation of the Premature Mortality Risk Prediction Tool (PreMPoRT) that will predict the incidence of premature mortality using large population-based community health surveys and multivariable modeling approaches.</p><p><strong>Methods: </strong>PreMPoRT will be developed and validated using various training, validation, and test data sets generated from the six cycles of the Canadian Community Health Survey (CCHS) linked to the Canadian Vital Statistics Database from 2000 to 2017. Population-level risk factor information on demographic characteristics, health behaviors, area level measures, and other health-related factors will be used to develop PreMPoRT and to predict the incidence of premature mortality, defined as death prior to age 75, over a 5-year period. Sex-specific Weibull accelerated failure time models will be developed using a Canadian provincial derivation cohort consisting of approximately 500,000 individuals, with approximately equal proportion of males and females, and about 12,000 events of premature mortality. External validation will be performed using separate linked files (CCHS cycles 2007-2008, 2009-2010, and 2011-2012) from the development cohort (CCHS cycles 2000-2001, 2003-2004, and 2005-2006) to check the robustness of the prediction model. Measures of overall predictive performance (e.g., Nagelkerke's R<sup>2</sup>), calibration (e.g., calibration plots), and discrimination (e.g., Harrell's concordance statistic) will be assessed, including calibration within defined subgroups of importance to knowledge users and policymakers.</p><p><strong>Discussion: </strong>Using routinely collected risk factor information, we anticipate that PreMPoRT will produce population-based estimates of premature mortality and will be used to inform population strategies for prevention.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"4 1","pages":"18"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7640636/pdf/","citationCount":"0","resultStr":"{\"title\":\"A study protocol for a predictive algorithm to assess population-based premature mortality risk: Premature Mortality Population Risk Tool (PreMPoRT).\",\"authors\":\"Laura C Rosella, Meghan O'Neill, Stacey Fisher, Mackenzie Hurst, Lori Diemert, Kathy Kornas, Andy Hong, Douglas G Manuel\",\"doi\":\"10.1186/s41512-020-00086-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Premature mortality is an important population health indicator used to assess health system functioning and to identify areas in need of health system intervention. Predicting the future incidence of premature mortality in the population can facilitate initiatives that promote equitable health policies and effective delivery of public health services. This study protocol proposes the development and validation of the Premature Mortality Risk Prediction Tool (PreMPoRT) that will predict the incidence of premature mortality using large population-based community health surveys and multivariable modeling approaches.</p><p><strong>Methods: </strong>PreMPoRT will be developed and validated using various training, validation, and test data sets generated from the six cycles of the Canadian Community Health Survey (CCHS) linked to the Canadian Vital Statistics Database from 2000 to 2017. Population-level risk factor information on demographic characteristics, health behaviors, area level measures, and other health-related factors will be used to develop PreMPoRT and to predict the incidence of premature mortality, defined as death prior to age 75, over a 5-year period. Sex-specific Weibull accelerated failure time models will be developed using a Canadian provincial derivation cohort consisting of approximately 500,000 individuals, with approximately equal proportion of males and females, and about 12,000 events of premature mortality. External validation will be performed using separate linked files (CCHS cycles 2007-2008, 2009-2010, and 2011-2012) from the development cohort (CCHS cycles 2000-2001, 2003-2004, and 2005-2006) to check the robustness of the prediction model. Measures of overall predictive performance (e.g., Nagelkerke's R<sup>2</sup>), calibration (e.g., calibration plots), and discrimination (e.g., Harrell's concordance statistic) will be assessed, including calibration within defined subgroups of importance to knowledge users and policymakers.</p><p><strong>Discussion: </strong>Using routinely collected risk factor information, we anticipate that PreMPoRT will produce population-based estimates of premature mortality and will be used to inform population strategies for prevention.</p>\",\"PeriodicalId\":72800,\"journal\":{\"name\":\"Diagnostic and prognostic research\",\"volume\":\"4 1\",\"pages\":\"18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7640636/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostic and prognostic research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41512-020-00086-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and prognostic research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41512-020-00086-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:过早死亡是一项重要的人口健康指标,用于评估卫生系统的功能,并确定需要卫生系统干预的领域。预测未来人口过早死亡的发生率有助于促进公平的卫生政策和公共卫生服务的有效提供。本研究方案建议开发和验证早死风险预测工具 (PreMPoRT),该工具将利用大型人口社区健康调查和多变量建模方法预测早死发生率:PreMPoRT 将利用从 2000 年到 2017 年与加拿大生命统计数据库相连的加拿大社区健康调查(CCHS)六个周期中生成的各种训练、验证和测试数据集进行开发和验证。有关人口特征、健康行为、地区水平测量和其他健康相关因素的人口级风险因素信息将用于开发 PreMPoRT,并预测 5 年内过早死亡(定义为 75 岁前死亡)的发生率。将利用加拿大省级衍生队列开发针对不同性别的 Weibull 加速衰竭时间模型,该队列由大约 500,000 人组成,其中男性和女性的比例大致相等,并有大约 12,000 例过早死亡事件。外部验证将使用与开发队列(CCHS 周期 2000-2001、2003-2004 和 2005-2006)不同的链接文件(CCHS 周期 2007-2008、2009-2010 和 2011-2012)来检查预测模型的稳健性。将对总体预测性能(如纳格尔克 R2)、校准(如校准图)和区分度(如哈雷尔一致性统计量)进行评估,包括在对知识使用者和政策制定者具有重要意义的特定亚组中进行校准:我们预计,PreMPoRT 将利用日常收集的风险因素信息,得出基于人口的过早死亡率估计值,并将用于为人口预防策略提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study protocol for a predictive algorithm to assess population-based premature mortality risk: Premature Mortality Population Risk Tool (PreMPoRT).

Background: Premature mortality is an important population health indicator used to assess health system functioning and to identify areas in need of health system intervention. Predicting the future incidence of premature mortality in the population can facilitate initiatives that promote equitable health policies and effective delivery of public health services. This study protocol proposes the development and validation of the Premature Mortality Risk Prediction Tool (PreMPoRT) that will predict the incidence of premature mortality using large population-based community health surveys and multivariable modeling approaches.

Methods: PreMPoRT will be developed and validated using various training, validation, and test data sets generated from the six cycles of the Canadian Community Health Survey (CCHS) linked to the Canadian Vital Statistics Database from 2000 to 2017. Population-level risk factor information on demographic characteristics, health behaviors, area level measures, and other health-related factors will be used to develop PreMPoRT and to predict the incidence of premature mortality, defined as death prior to age 75, over a 5-year period. Sex-specific Weibull accelerated failure time models will be developed using a Canadian provincial derivation cohort consisting of approximately 500,000 individuals, with approximately equal proportion of males and females, and about 12,000 events of premature mortality. External validation will be performed using separate linked files (CCHS cycles 2007-2008, 2009-2010, and 2011-2012) from the development cohort (CCHS cycles 2000-2001, 2003-2004, and 2005-2006) to check the robustness of the prediction model. Measures of overall predictive performance (e.g., Nagelkerke's R2), calibration (e.g., calibration plots), and discrimination (e.g., Harrell's concordance statistic) will be assessed, including calibration within defined subgroups of importance to knowledge users and policymakers.

Discussion: Using routinely collected risk factor information, we anticipate that PreMPoRT will produce population-based estimates of premature mortality and will be used to inform population strategies for prevention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信