Junhui Zhang, Haitao Zhou, Juanli Chen, Xiaoyan Lv, Hongsong Liu
{"title":"Aloperine通过激活Nrf2/HO-1通路保护人视网膜色素上皮细胞免受过氧化氢诱导的氧化应激和凋亡。","authors":"Junhui Zhang, Haitao Zhou, Juanli Chen, Xiaoyan Lv, Hongsong Liu","doi":"10.1080/10799893.2020.1850787","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related macular degeneration (AMD) is a complex multifactorial disease associated with the dysfunction of retinal pigment epithelium (RPE). Aloperine is a quinolizidine alkaloid that has been proven to possess broad pharmacological activities. However, the effects of aloperine on AMD remain unclear. In the present study, we used hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to induce oxidative injury in human RPE cells (ARPE-19 cells). ARPE-19 cells were pretreated with different concentrations of aloperine for 2 h, followed by H<sub>2</sub>O<sub>2</sub> exposure. Cell cytotoxicity was determined using lactate dehydrogenase (LDH) release assay. Cell viability was measured using Cell Counting Kit-8 (CCK-8) assay. The reactive oxygen species (ROS) generation, malondialdehyde (MDA) level, superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-PX) activity were detected to reflect oxidative status. Western blot was performed to detect the expressions of bcl-2, bax, nuclear factor-erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). The activity of caspase-3 was also assessed to indicate cell apoptosis. In addition, ARPE-19 cells were transfected with siNrf2 to knock down Nrf2. Our results showed that pretreatment with aloperine elevated the reduced cell viability of H<sub>2</sub>O<sub>2</sub>-induced ARPE-19 cells in a dose-dependent manner. Aloperine greatly decreased the production of ROS and MDA, and increased the activities of SOD and GSH-PX in H<sub>2</sub>O<sub>2</sub>-stimulated ARPE-19 cells. H<sub>2</sub>O<sub>2</sub>-caused a decrease in bcl-2 expression and increases in bax expression and caspase-3 activity were mitigated by aloperine. Moreover, aloperine treatment enhanced the expression levels of Nrf2 in nuclear fraction and the HO-1 expression in lysates. Knockdown of Nrf2 reversed the protective effects of aloperine on H<sub>2</sub>O<sub>2</sub>-induced ARPE-19 cells. In conclusion, these findings demonstrated that aloperine protected ARPE-19 cells from H<sub>2</sub>O<sub>2</sub>-induced oxidative stress and apoptosis in part <i>via</i> activating the Nrf2/HO-1 signaling pathway. The findings suggested a therapeutic potential of aloperine for the treatment of ADM.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":"42 1","pages":"88-94"},"PeriodicalIF":2.6000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10799893.2020.1850787","citationCount":"9","resultStr":"{\"title\":\"Aloperine protects human retinal pigment epithelial cells against hydrogen peroxide-induced oxidative stress and apoptosis through activation of Nrf2/HO-1 pathway.\",\"authors\":\"Junhui Zhang, Haitao Zhou, Juanli Chen, Xiaoyan Lv, Hongsong Liu\",\"doi\":\"10.1080/10799893.2020.1850787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Age-related macular degeneration (AMD) is a complex multifactorial disease associated with the dysfunction of retinal pigment epithelium (RPE). Aloperine is a quinolizidine alkaloid that has been proven to possess broad pharmacological activities. However, the effects of aloperine on AMD remain unclear. In the present study, we used hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to induce oxidative injury in human RPE cells (ARPE-19 cells). ARPE-19 cells were pretreated with different concentrations of aloperine for 2 h, followed by H<sub>2</sub>O<sub>2</sub> exposure. Cell cytotoxicity was determined using lactate dehydrogenase (LDH) release assay. Cell viability was measured using Cell Counting Kit-8 (CCK-8) assay. The reactive oxygen species (ROS) generation, malondialdehyde (MDA) level, superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-PX) activity were detected to reflect oxidative status. Western blot was performed to detect the expressions of bcl-2, bax, nuclear factor-erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). The activity of caspase-3 was also assessed to indicate cell apoptosis. In addition, ARPE-19 cells were transfected with siNrf2 to knock down Nrf2. Our results showed that pretreatment with aloperine elevated the reduced cell viability of H<sub>2</sub>O<sub>2</sub>-induced ARPE-19 cells in a dose-dependent manner. Aloperine greatly decreased the production of ROS and MDA, and increased the activities of SOD and GSH-PX in H<sub>2</sub>O<sub>2</sub>-stimulated ARPE-19 cells. H<sub>2</sub>O<sub>2</sub>-caused a decrease in bcl-2 expression and increases in bax expression and caspase-3 activity were mitigated by aloperine. Moreover, aloperine treatment enhanced the expression levels of Nrf2 in nuclear fraction and the HO-1 expression in lysates. Knockdown of Nrf2 reversed the protective effects of aloperine on H<sub>2</sub>O<sub>2</sub>-induced ARPE-19 cells. In conclusion, these findings demonstrated that aloperine protected ARPE-19 cells from H<sub>2</sub>O<sub>2</sub>-induced oxidative stress and apoptosis in part <i>via</i> activating the Nrf2/HO-1 signaling pathway. The findings suggested a therapeutic potential of aloperine for the treatment of ADM.</p>\",\"PeriodicalId\":16962,\"journal\":{\"name\":\"Journal of Receptors and Signal Transduction\",\"volume\":\"42 1\",\"pages\":\"88-94\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10799893.2020.1850787\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Receptors and Signal Transduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10799893.2020.1850787\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/11/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2020.1850787","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Aloperine protects human retinal pigment epithelial cells against hydrogen peroxide-induced oxidative stress and apoptosis through activation of Nrf2/HO-1 pathway.
Age-related macular degeneration (AMD) is a complex multifactorial disease associated with the dysfunction of retinal pigment epithelium (RPE). Aloperine is a quinolizidine alkaloid that has been proven to possess broad pharmacological activities. However, the effects of aloperine on AMD remain unclear. In the present study, we used hydrogen peroxide (H2O2) to induce oxidative injury in human RPE cells (ARPE-19 cells). ARPE-19 cells were pretreated with different concentrations of aloperine for 2 h, followed by H2O2 exposure. Cell cytotoxicity was determined using lactate dehydrogenase (LDH) release assay. Cell viability was measured using Cell Counting Kit-8 (CCK-8) assay. The reactive oxygen species (ROS) generation, malondialdehyde (MDA) level, superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-PX) activity were detected to reflect oxidative status. Western blot was performed to detect the expressions of bcl-2, bax, nuclear factor-erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). The activity of caspase-3 was also assessed to indicate cell apoptosis. In addition, ARPE-19 cells were transfected with siNrf2 to knock down Nrf2. Our results showed that pretreatment with aloperine elevated the reduced cell viability of H2O2-induced ARPE-19 cells in a dose-dependent manner. Aloperine greatly decreased the production of ROS and MDA, and increased the activities of SOD and GSH-PX in H2O2-stimulated ARPE-19 cells. H2O2-caused a decrease in bcl-2 expression and increases in bax expression and caspase-3 activity were mitigated by aloperine. Moreover, aloperine treatment enhanced the expression levels of Nrf2 in nuclear fraction and the HO-1 expression in lysates. Knockdown of Nrf2 reversed the protective effects of aloperine on H2O2-induced ARPE-19 cells. In conclusion, these findings demonstrated that aloperine protected ARPE-19 cells from H2O2-induced oxidative stress and apoptosis in part via activating the Nrf2/HO-1 signaling pathway. The findings suggested a therapeutic potential of aloperine for the treatment of ADM.
期刊介绍:
Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services:
BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.