{"title":"CD4 T细胞代谢是HIV传染性和库持久性的主要贡献者。","authors":"Harry E Taylor, Clovis S Palmer","doi":"10.20900/immunometab20200005","DOIUrl":null,"url":null,"abstract":"<p><p>HIV infection is characterized by elevated glycolytic metabolism in CD4 T cells. In their recent study, Valle-Casuso et al. demonstrated that both increased glucose utilization and glutamine metabolism are essential for HIV infectivity and replication in CD4 T cells. Here, we discuss the broader implications of immunometabolism in studies of HIV persistence and their potential to inform new treatment and curative strategies.</p>","PeriodicalId":13361,"journal":{"name":"Immunometabolism","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682929/pdf/","citationCount":"4","resultStr":"{\"title\":\"CD4 T Cell Metabolism Is a Major Contributor of HIV Infectivity and Reservoir Persistence.\",\"authors\":\"Harry E Taylor, Clovis S Palmer\",\"doi\":\"10.20900/immunometab20200005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>HIV infection is characterized by elevated glycolytic metabolism in CD4 T cells. In their recent study, Valle-Casuso et al. demonstrated that both increased glucose utilization and glutamine metabolism are essential for HIV infectivity and replication in CD4 T cells. Here, we discuss the broader implications of immunometabolism in studies of HIV persistence and their potential to inform new treatment and curative strategies.</p>\",\"PeriodicalId\":13361,\"journal\":{\"name\":\"Immunometabolism\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682929/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunometabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20900/immunometab20200005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunometabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20900/immunometab20200005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
CD4 T Cell Metabolism Is a Major Contributor of HIV Infectivity and Reservoir Persistence.
HIV infection is characterized by elevated glycolytic metabolism in CD4 T cells. In their recent study, Valle-Casuso et al. demonstrated that both increased glucose utilization and glutamine metabolism are essential for HIV infectivity and replication in CD4 T cells. Here, we discuss the broader implications of immunometabolism in studies of HIV persistence and their potential to inform new treatment and curative strategies.