走后门:非常规蛋白质分泌

Q1 Immunology and Microbiology
Michael J. Cohen , William J. Chirico , Peter N. Lipke
{"title":"走后门:非常规蛋白质分泌","authors":"Michael J. Cohen ,&nbsp;William J. Chirico ,&nbsp;Peter N. Lipke","doi":"10.1016/j.tcsw.2020.100045","DOIUrl":null,"url":null,"abstract":"<div><p>Proteins are secreted from eukaryotic cells by several mechanisms besides the well-characterized classical secretory system. Proteins destined to enter the classical secretory system contain a signal peptide for translocation into the endoplasmic reticulum. However, many proteins lacking a signal peptide are secreted nonetheless. Contrary to conventional belief, these proteins are not just released as a result of membrane damage leading to cell leakage, but are actively packaged for secretion in alternative pathways. They are called unconventionally secreted proteins, and the best-characterized are from fungi and mammals. These proteins have extracellular functions including cell signaling, immune modulation, as well as moonlighting activities different from their well-described intracellular functions. Among the pathways for unconventional secretion are direct transfer across the plasma membrane, release within plasma membrane-derived microvesicles, use of elements of autophagy, or secretion from endosomal/multivesicular body-related components. We review the fungal and metazoan unconventional secretory pathways and their regulation, and propose experimental criteria to identify their mode of secretion.</p></div>","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"6 ","pages":"Article 100045"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.tcsw.2020.100045","citationCount":"34","resultStr":"{\"title\":\"Through the back door: Unconventional protein secretion\",\"authors\":\"Michael J. Cohen ,&nbsp;William J. Chirico ,&nbsp;Peter N. Lipke\",\"doi\":\"10.1016/j.tcsw.2020.100045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Proteins are secreted from eukaryotic cells by several mechanisms besides the well-characterized classical secretory system. Proteins destined to enter the classical secretory system contain a signal peptide for translocation into the endoplasmic reticulum. However, many proteins lacking a signal peptide are secreted nonetheless. Contrary to conventional belief, these proteins are not just released as a result of membrane damage leading to cell leakage, but are actively packaged for secretion in alternative pathways. They are called unconventionally secreted proteins, and the best-characterized are from fungi and mammals. These proteins have extracellular functions including cell signaling, immune modulation, as well as moonlighting activities different from their well-described intracellular functions. Among the pathways for unconventional secretion are direct transfer across the plasma membrane, release within plasma membrane-derived microvesicles, use of elements of autophagy, or secretion from endosomal/multivesicular body-related components. We review the fungal and metazoan unconventional secretory pathways and their regulation, and propose experimental criteria to identify their mode of secretion.</p></div>\",\"PeriodicalId\":36539,\"journal\":{\"name\":\"Cell Surface\",\"volume\":\"6 \",\"pages\":\"Article 100045\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.tcsw.2020.100045\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Surface\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468233020300128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Surface","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468233020300128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 34

摘要

真核细胞分泌蛋白质,除了典型的分泌系统外,还有多种机制。注定要进入经典分泌系统的蛋白质包含一个信号肽,用于转运到内质网。然而,许多缺乏信号肽的蛋白质仍然被分泌。与传统观点相反,这些蛋白质不仅是由于膜损伤导致细胞渗漏而释放的,而且还通过其他途径主动包装以供分泌。它们被称为非常规分泌蛋白,最具特征的是来自真菌和哺乳动物。这些蛋白具有细胞外功能,包括细胞信号传导、免疫调节,以及与细胞内功能不同的兼职活动。非常规分泌的途径包括直接跨质膜转移、在质膜衍生的微泡内释放、利用自噬成分或从内体/多泡体相关成分分泌。本文综述了真菌和后生动物的非常规分泌途径及其调控,并提出了鉴定其分泌方式的实验标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Through the back door: Unconventional protein secretion

Through the back door: Unconventional protein secretion

Through the back door: Unconventional protein secretion

Through the back door: Unconventional protein secretion

Proteins are secreted from eukaryotic cells by several mechanisms besides the well-characterized classical secretory system. Proteins destined to enter the classical secretory system contain a signal peptide for translocation into the endoplasmic reticulum. However, many proteins lacking a signal peptide are secreted nonetheless. Contrary to conventional belief, these proteins are not just released as a result of membrane damage leading to cell leakage, but are actively packaged for secretion in alternative pathways. They are called unconventionally secreted proteins, and the best-characterized are from fungi and mammals. These proteins have extracellular functions including cell signaling, immune modulation, as well as moonlighting activities different from their well-described intracellular functions. Among the pathways for unconventional secretion are direct transfer across the plasma membrane, release within plasma membrane-derived microvesicles, use of elements of autophagy, or secretion from endosomal/multivesicular body-related components. We review the fungal and metazoan unconventional secretory pathways and their regulation, and propose experimental criteria to identify their mode of secretion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Surface
Cell Surface Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
6.10
自引率
0.00%
发文量
18
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信