基因组规模的代谢重新布线提高了非本地产品靛玉红的滴定率和产量。

IF 3.784 3区 化学 Q1 Chemistry
Deepanwita Banerjee, Thomas Eng, Andrew K Lau, Yusuke Sasaki, Brenda Wang, Yan Chen, Jan-Philip Prahl, Vasanth R Singan, Robin A Herbert, Yuzhong Liu, Deepti Tanjore, Christopher J Petzold, Jay D Keasling, Aindrila Mukhopadhyay
{"title":"基因组规模的代谢重新布线提高了非本地产品靛玉红的滴定率和产量。","authors":"Deepanwita Banerjee, Thomas Eng, Andrew K Lau, Yusuke Sasaki, Brenda Wang, Yan Chen, Jan-Philip Prahl, Vasanth R Singan, Robin A Herbert, Yuzhong Liu, Deepti Tanjore, Christopher J Petzold, Jay D Keasling, Aindrila Mukhopadhyay","doi":"10.1038/s41467-020-19171-4","DOIUrl":null,"url":null,"abstract":"<p><p>High titer, rate, yield (TRY), and scalability are challenging metrics to achieve due to trade-offs between carbon use for growth and production. To achieve these metrics, we take the minimal cut set (MCS) approach that predicts metabolic reactions for elimination to couple metabolite production strongly with growth. We compute MCS solution-sets for a non-native product indigoidine, a sustainable pigment, in Pseudomonas putida KT2440, an emerging industrial microbe. From the 63 solution-sets, our omics guided process identifies one experimentally feasible solution requiring 14 simultaneous reaction interventions. We implement a total of 14 genes knockdowns using multiplex-CRISPRi. MCS-based solution shifts production from stationary to exponential phase. We achieve 25.6 g/L, 0.22 g/l/h, and ~50% maximum theoretical yield (0.33 g indigoidine/g glucose). These phenotypes are maintained from batch to fed-batch mode, and across scales (100-ml shake flasks, 250-ml ambr®, and 2-L bioreactors).</p>","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":" ","pages":"5385"},"PeriodicalIF":3.7840,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584609/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale.\",\"authors\":\"Deepanwita Banerjee, Thomas Eng, Andrew K Lau, Yusuke Sasaki, Brenda Wang, Yan Chen, Jan-Philip Prahl, Vasanth R Singan, Robin A Herbert, Yuzhong Liu, Deepti Tanjore, Christopher J Petzold, Jay D Keasling, Aindrila Mukhopadhyay\",\"doi\":\"10.1038/s41467-020-19171-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High titer, rate, yield (TRY), and scalability are challenging metrics to achieve due to trade-offs between carbon use for growth and production. To achieve these metrics, we take the minimal cut set (MCS) approach that predicts metabolic reactions for elimination to couple metabolite production strongly with growth. We compute MCS solution-sets for a non-native product indigoidine, a sustainable pigment, in Pseudomonas putida KT2440, an emerging industrial microbe. From the 63 solution-sets, our omics guided process identifies one experimentally feasible solution requiring 14 simultaneous reaction interventions. We implement a total of 14 genes knockdowns using multiplex-CRISPRi. MCS-based solution shifts production from stationary to exponential phase. We achieve 25.6 g/L, 0.22 g/l/h, and ~50% maximum theoretical yield (0.33 g indigoidine/g glucose). These phenotypes are maintained from batch to fed-batch mode, and across scales (100-ml shake flasks, 250-ml ambr®, and 2-L bioreactors).</p>\",\"PeriodicalId\":14,\"journal\":{\"name\":\"ACS Combinatorial Science\",\"volume\":\" \",\"pages\":\"5385\"},\"PeriodicalIF\":3.7840,\"publicationDate\":\"2020-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584609/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Combinatorial Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-020-19171-4\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-020-19171-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

高滴度、高速率、高产率(TRY)和可扩展性是具有挑战性的指标,因为要在生长和生产的碳使用之间进行权衡。为了达到这些指标,我们采用了最小切割集(MCS)方法,通过预测消除代谢反应,将代谢物的生产与生长紧密结合起来。我们计算了一种非本地产品靛玉红(一种可持续色素)在假单胞菌 KT2440(一种新兴的工业微生物)中的 MCS 解集。在这 63 个方案集中,我们的 omics 引导过程确定了一个实验可行的方案,需要同时进行 14 个反应干预。我们利用多重 CRISPRi 共敲除了 14 个基因。基于 MCS 的解决方案将生产从静止期转入指数期。我们实现了 25.6 克/升、0.22 克/升/小时和约 50% 的最大理论产量(0.33 克靛红/克葡萄糖)。这些表型从批次模式到喂料批次模式以及不同规模(100 毫升摇瓶、250 毫升 ambr® 和 2 升生物反应器)都能保持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale.

Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale.

Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale.

Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale.

High titer, rate, yield (TRY), and scalability are challenging metrics to achieve due to trade-offs between carbon use for growth and production. To achieve these metrics, we take the minimal cut set (MCS) approach that predicts metabolic reactions for elimination to couple metabolite production strongly with growth. We compute MCS solution-sets for a non-native product indigoidine, a sustainable pigment, in Pseudomonas putida KT2440, an emerging industrial microbe. From the 63 solution-sets, our omics guided process identifies one experimentally feasible solution requiring 14 simultaneous reaction interventions. We implement a total of 14 genes knockdowns using multiplex-CRISPRi. MCS-based solution shifts production from stationary to exponential phase. We achieve 25.6 g/L, 0.22 g/l/h, and ~50% maximum theoretical yield (0.33 g indigoidine/g glucose). These phenotypes are maintained from batch to fed-batch mode, and across scales (100-ml shake flasks, 250-ml ambr®, and 2-L bioreactors).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Combinatorial Science
ACS Combinatorial Science CHEMISTRY, APPLIED-CHEMISTRY, MEDICINAL
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信