结核分枝杆菌转录调控网络中稳健基因的鉴定

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Prithvi Singh, Mohd Amir, Upasana Chaudhary, Fozail Ahmad, Sachin Bhatt, Shweta Sankhwar, Ravins Dohare
{"title":"结核分枝杆菌转录调控网络中稳健基因的鉴定","authors":"Prithvi Singh,&nbsp;Mohd Amir,&nbsp;Upasana Chaudhary,&nbsp;Fozail Ahmad,&nbsp;Sachin Bhatt,&nbsp;Shweta Sankhwar,&nbsp;Ravins Dohare","doi":"10.1049/iet-syb.2020.0039","DOIUrl":null,"url":null,"abstract":"<div>\n <p>About 30% of the world population is infected with Mycobacterium tuberculosis (MTB). It is well known that the gene expression in MTB is highly variable, thus screening of traditional single-gene in MTB has been incapable to meet the desires of clinical diagnosis. In this report, the authors systemically analysed the transcription regulatory network (TRN) in MTB <i>H37Rv.</i> The complex interplay of these gene interactions has been revealed using exhaustive topological and global analysis of TRN using parameters including indegree, outdegree, degree, directed and undirected average path length (APL), and randomly performed. Results from indegree analysis reveal a set of important genes, including <i>papA5</i> and <i>Rv0177</i> which are associated with high indegree values. Gene ontology analysis suggested their importance in the virulence of MTB. In addition, APL and analysis of highly significant genes further identified some critical genes with different APL values. Among the list of genes identified, the<i>csoR</i> gene has the shortest directed APL score and high outdegree value, thus suggesting their importance in maintaining network topology. This study provides a comprehensive analysis of TRN and offers a good basis of understanding for developing experimental study in search of new therapeutic targets against MTB H37Rv pathogen.</p>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687171/pdf/SYB2-14-292.pdf","citationCount":"2","resultStr":"{\"title\":\"Identification of robust genes in transcriptional regulatory network of Mycobacterium tuberculosis\",\"authors\":\"Prithvi Singh,&nbsp;Mohd Amir,&nbsp;Upasana Chaudhary,&nbsp;Fozail Ahmad,&nbsp;Sachin Bhatt,&nbsp;Shweta Sankhwar,&nbsp;Ravins Dohare\",\"doi\":\"10.1049/iet-syb.2020.0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>About 30% of the world population is infected with Mycobacterium tuberculosis (MTB). It is well known that the gene expression in MTB is highly variable, thus screening of traditional single-gene in MTB has been incapable to meet the desires of clinical diagnosis. In this report, the authors systemically analysed the transcription regulatory network (TRN) in MTB <i>H37Rv.</i> The complex interplay of these gene interactions has been revealed using exhaustive topological and global analysis of TRN using parameters including indegree, outdegree, degree, directed and undirected average path length (APL), and randomly performed. Results from indegree analysis reveal a set of important genes, including <i>papA5</i> and <i>Rv0177</i> which are associated with high indegree values. Gene ontology analysis suggested their importance in the virulence of MTB. In addition, APL and analysis of highly significant genes further identified some critical genes with different APL values. Among the list of genes identified, the<i>csoR</i> gene has the shortest directed APL score and high outdegree value, thus suggesting their importance in maintaining network topology. This study provides a comprehensive analysis of TRN and offers a good basis of understanding for developing experimental study in search of new therapeutic targets against MTB H37Rv pathogen.</p>\\n </div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687171/pdf/SYB2-14-292.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2020.0039\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2020.0039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

大约30%的世界人口感染了结核分枝杆菌(MTB)。众所周知,MTB的基因表达具有高度的可变性,传统的MTB单基因筛选已不能满足临床诊断的需要。本文系统分析了结核分枝杆菌H37Rv的转录调控网络(TRN)。这些基因相互作用的复杂相互作用已经揭示了详尽的拓扑分析和TRN的全局分析,使用参数包括度,度,度,有向和无向平均路径长度(APL),并随机执行。度分析结果揭示了一组与高度值相关的重要基因,包括papA5和Rv0177。基因本体论分析表明它们在结核分枝杆菌毒力中起重要作用。此外,通过对APL和高显著性基因的分析,进一步鉴定出一些具有不同APL值的关键基因。在已鉴定的基因列表中,sor基因具有最短的定向APL评分和较高的外度值,从而表明其在维持网络拓扑结构方面的重要性。本研究对TRN进行了全面的分析,为开展寻找MTB H37Rv病原体治疗新靶点的实验研究提供了良好的认识基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identification of robust genes in transcriptional regulatory network of Mycobacterium tuberculosis

Identification of robust genes in transcriptional regulatory network of Mycobacterium tuberculosis

About 30% of the world population is infected with Mycobacterium tuberculosis (MTB). It is well known that the gene expression in MTB is highly variable, thus screening of traditional single-gene in MTB has been incapable to meet the desires of clinical diagnosis. In this report, the authors systemically analysed the transcription regulatory network (TRN) in MTB H37Rv. The complex interplay of these gene interactions has been revealed using exhaustive topological and global analysis of TRN using parameters including indegree, outdegree, degree, directed and undirected average path length (APL), and randomly performed. Results from indegree analysis reveal a set of important genes, including papA5 and Rv0177 which are associated with high indegree values. Gene ontology analysis suggested their importance in the virulence of MTB. In addition, APL and analysis of highly significant genes further identified some critical genes with different APL values. Among the list of genes identified, thecsoR gene has the shortest directed APL score and high outdegree value, thus suggesting their importance in maintaining network topology. This study provides a comprehensive analysis of TRN and offers a good basis of understanding for developing experimental study in search of new therapeutic targets against MTB H37Rv pathogen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信