Md Kamrujjaman, Md Shahriar Mahmud, Md Shafiqul Islam
{"title":"具有治疗影响和流行病学非线性发生率的扩散疫苗模型的动力学。","authors":"Md Kamrujjaman, Md Shahriar Mahmud, Md Shafiqul Islam","doi":"10.1080/17513758.2020.1849831","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we study a more general diffusive spatially dependent vaccination model for infectious disease. In our diffusive vaccination model, we consider both therapeutic impact and nonlinear incidence rate. Also, in this model, the number of compartments of susceptible, vaccinated and infectious individuals are considered to be functions of both time and location, where the set of locations (equivalently, spatial habitats) is a subset of <math><msup><mrow><mi>R</mi></mrow><mi>n</mi></msup></math> with a smooth boundary. Both local and global stability of the model are studied. Our study shows that if the threshold level <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>≤</mo><mn>1</mn><mo>,</mo></math> the disease-free equilibrium <math><msub><mi>E</mi><mn>0</mn></msub></math> is globally asymptotically stable. On the other hand, if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>></mo><mn>1</mn></math> then there exists a unique stable disease equilibrium <math><msup><mi>E</mi><mo>∗</mo></msup></math>. The existence of solutions of the model and uniform persistence results are studied. Finally, using finite difference scheme, we present a number of numerical examples to verify our analytical results. Our results indicate that the global dynamics of the model are completely determined by the threshold value <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1849831","citationCount":"7","resultStr":"{\"title\":\"Dynamics of a diffusive vaccination model with therapeutic impact and non-linear incidence in epidemiology.\",\"authors\":\"Md Kamrujjaman, Md Shahriar Mahmud, Md Shafiqul Islam\",\"doi\":\"10.1080/17513758.2020.1849831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we study a more general diffusive spatially dependent vaccination model for infectious disease. In our diffusive vaccination model, we consider both therapeutic impact and nonlinear incidence rate. Also, in this model, the number of compartments of susceptible, vaccinated and infectious individuals are considered to be functions of both time and location, where the set of locations (equivalently, spatial habitats) is a subset of <math><msup><mrow><mi>R</mi></mrow><mi>n</mi></msup></math> with a smooth boundary. Both local and global stability of the model are studied. Our study shows that if the threshold level <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>≤</mo><mn>1</mn><mo>,</mo></math> the disease-free equilibrium <math><msub><mi>E</mi><mn>0</mn></msub></math> is globally asymptotically stable. On the other hand, if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>></mo><mn>1</mn></math> then there exists a unique stable disease equilibrium <math><msup><mi>E</mi><mo>∗</mo></msup></math>. The existence of solutions of the model and uniform persistence results are studied. Finally, using finite difference scheme, we present a number of numerical examples to verify our analytical results. Our results indicate that the global dynamics of the model are completely determined by the threshold value <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17513758.2020.1849831\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2020.1849831\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/11/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2020.1849831","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamics of a diffusive vaccination model with therapeutic impact and non-linear incidence in epidemiology.
In this paper, we study a more general diffusive spatially dependent vaccination model for infectious disease. In our diffusive vaccination model, we consider both therapeutic impact and nonlinear incidence rate. Also, in this model, the number of compartments of susceptible, vaccinated and infectious individuals are considered to be functions of both time and location, where the set of locations (equivalently, spatial habitats) is a subset of with a smooth boundary. Both local and global stability of the model are studied. Our study shows that if the threshold level the disease-free equilibrium is globally asymptotically stable. On the other hand, if then there exists a unique stable disease equilibrium . The existence of solutions of the model and uniform persistence results are studied. Finally, using finite difference scheme, we present a number of numerical examples to verify our analytical results. Our results indicate that the global dynamics of the model are completely determined by the threshold value .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.