具有治疗影响和流行病学非线性发生率的扩散疫苗模型的动力学。

IF 1.8 4区 数学 Q3 ECOLOGY
Journal of Biological Dynamics Pub Date : 2021-05-01 Epub Date: 2020-11-18 DOI:10.1080/17513758.2020.1849831
Md Kamrujjaman, Md Shahriar Mahmud, Md Shafiqul Islam
{"title":"具有治疗影响和流行病学非线性发生率的扩散疫苗模型的动力学。","authors":"Md Kamrujjaman,&nbsp;Md Shahriar Mahmud,&nbsp;Md Shafiqul Islam","doi":"10.1080/17513758.2020.1849831","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we study a more general diffusive spatially dependent vaccination model for infectious disease. In our diffusive vaccination model, we consider both therapeutic impact and nonlinear incidence rate. Also, in this model, the number of compartments of susceptible, vaccinated and infectious individuals are considered to be functions of both time and location, where the set of locations (equivalently, spatial habitats) is a subset of <math><msup><mrow><mi>R</mi></mrow><mi>n</mi></msup></math> with a smooth boundary. Both local and global stability of the model are studied. Our study shows that if the threshold level <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>≤</mo><mn>1</mn><mo>,</mo></math> the disease-free equilibrium <math><msub><mi>E</mi><mn>0</mn></msub></math> is globally asymptotically stable. On the other hand, if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>></mo><mn>1</mn></math> then there exists a unique stable disease equilibrium <math><msup><mi>E</mi><mo>∗</mo></msup></math>. The existence of solutions of the model and uniform persistence results are studied. Finally, using finite difference scheme, we present a number of numerical examples to verify our analytical results. Our results indicate that the global dynamics of the model are completely determined by the threshold value <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math>.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"15 sup1","pages":"S105-S133"},"PeriodicalIF":1.8000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1849831","citationCount":"7","resultStr":"{\"title\":\"Dynamics of a diffusive vaccination model with therapeutic impact and non-linear incidence in epidemiology.\",\"authors\":\"Md Kamrujjaman,&nbsp;Md Shahriar Mahmud,&nbsp;Md Shafiqul Islam\",\"doi\":\"10.1080/17513758.2020.1849831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we study a more general diffusive spatially dependent vaccination model for infectious disease. In our diffusive vaccination model, we consider both therapeutic impact and nonlinear incidence rate. Also, in this model, the number of compartments of susceptible, vaccinated and infectious individuals are considered to be functions of both time and location, where the set of locations (equivalently, spatial habitats) is a subset of <math><msup><mrow><mi>R</mi></mrow><mi>n</mi></msup></math> with a smooth boundary. Both local and global stability of the model are studied. Our study shows that if the threshold level <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>≤</mo><mn>1</mn><mo>,</mo></math> the disease-free equilibrium <math><msub><mi>E</mi><mn>0</mn></msub></math> is globally asymptotically stable. On the other hand, if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>></mo><mn>1</mn></math> then there exists a unique stable disease equilibrium <math><msup><mi>E</mi><mo>∗</mo></msup></math>. The existence of solutions of the model and uniform persistence results are studied. Finally, using finite difference scheme, we present a number of numerical examples to verify our analytical results. Our results indicate that the global dynamics of the model are completely determined by the threshold value <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math>.</p>\",\"PeriodicalId\":48809,\"journal\":{\"name\":\"Journal of Biological Dynamics\",\"volume\":\"15 sup1\",\"pages\":\"S105-S133\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17513758.2020.1849831\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2020.1849831\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/11/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2020.1849831","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们研究了一个更一般的传染病扩散空间依赖疫苗接种模型。在我们的扩散疫苗模型中,我们同时考虑了治疗效果和非线性发病率。此外,在该模型中,易感个体、接种个体和感染个体的隔室数被认为是时间和位置的函数,其中位置集(相当于空间栖息地)是具有光滑边界的Rn子集。研究了模型的局部稳定性和全局稳定性。我们的研究表明,当阈值水平R0≤1时,无病平衡E0是全局渐近稳定的。另一方面,如果R0>1,则存在唯一的稳定疾病平衡点E *。研究了模型解的存在性和均匀持续性结果。最后,我们用有限差分格式给出了一些数值例子来验证我们的分析结果。结果表明,模型的全局动力学完全由阈值R0决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of a diffusive vaccination model with therapeutic impact and non-linear incidence in epidemiology.

In this paper, we study a more general diffusive spatially dependent vaccination model for infectious disease. In our diffusive vaccination model, we consider both therapeutic impact and nonlinear incidence rate. Also, in this model, the number of compartments of susceptible, vaccinated and infectious individuals are considered to be functions of both time and location, where the set of locations (equivalently, spatial habitats) is a subset of Rn with a smooth boundary. Both local and global stability of the model are studied. Our study shows that if the threshold level R01, the disease-free equilibrium E0 is globally asymptotically stable. On the other hand, if R0>1 then there exists a unique stable disease equilibrium E. The existence of solutions of the model and uniform persistence results are studied. Finally, using finite difference scheme, we present a number of numerical examples to verify our analytical results. Our results indicate that the global dynamics of the model are completely determined by the threshold value R0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Dynamics
Journal of Biological Dynamics ECOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.90
自引率
3.60%
发文量
28
审稿时长
33 weeks
期刊介绍: Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信