Eeva Jansson, Francois Besnier, Ketil Malde, Carl André, Geir Dahle, Kevin A Glover
{"title":"全基因组分析揭示了濑鱼种群之间的遗传差异。","authors":"Eeva Jansson, Francois Besnier, Ketil Malde, Carl André, Geir Dahle, Kevin A Glover","doi":"10.1186/s12863-020-00921-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Marine fish populations are often characterized by high levels of gene flow and correspondingly low genetic divergence. This presents a challenge to define management units. Goldsinny wrasse (Ctenolabrus rupestris) is a heavily exploited species due to its importance as a cleaner-fish in commercial salmonid aquaculture. However, at the present, the population genetic structure of this species is still largely unresolved. Here, full-genome sequencing was used to produce the first genomic reference for this species, to study population-genomic divergence among four geographically distinct populations, and, to identify informative SNP markers for future studies.</p><p><strong>Results: </strong>After construction of a de novo assembly, the genome was estimated to be highly polymorphic and of ~600Mbp in size. 33,235 SNPs were thereafter selected to assess genomic diversity and differentiation among four populations collected from Scandinavia, Scotland, and Spain. Global F<sub>ST</sub> among these populations was 0.015-0.092. Approximately 4% of the investigated loci were identified as putative global outliers, and ~ 1% within Scandinavia. SNPs showing large divergence (F<sub>ST</sub> > 0.15) were picked as candidate diagnostic markers for population assignment. One hundred seventy-three of the most diagnostic SNPs between the two Scandinavian populations were validated by genotyping 47 individuals from each end of the species' Scandinavian distribution range. Sixty-nine of these SNPs were significantly (p < 0.05) differentiated (mean F<sub>ST_173_loci</sub> = 0.065, F<sub>ST_69_loci</sub> = 0.140). Using these validated SNPs, individuals were assigned with high probability (≥ 94%) to their populations of origin.</p><p><strong>Conclusions: </strong>Goldsinny wrasse displays a highly polymorphic genome, and substantial population genomic structure. Diversifying selection likely affects population structuring globally and within Scandinavia. The diagnostic loci identified now provide a promising and cost-efficient tool to investigate goldsinny wrasse populations further.</p>","PeriodicalId":9197,"journal":{"name":"BMC Genetics","volume":" ","pages":"118"},"PeriodicalIF":2.9000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12863-020-00921-8","citationCount":"7","resultStr":"{\"title\":\"Genome wide analysis reveals genetic divergence between Goldsinny wrasse populations.\",\"authors\":\"Eeva Jansson, Francois Besnier, Ketil Malde, Carl André, Geir Dahle, Kevin A Glover\",\"doi\":\"10.1186/s12863-020-00921-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Marine fish populations are often characterized by high levels of gene flow and correspondingly low genetic divergence. This presents a challenge to define management units. Goldsinny wrasse (Ctenolabrus rupestris) is a heavily exploited species due to its importance as a cleaner-fish in commercial salmonid aquaculture. However, at the present, the population genetic structure of this species is still largely unresolved. Here, full-genome sequencing was used to produce the first genomic reference for this species, to study population-genomic divergence among four geographically distinct populations, and, to identify informative SNP markers for future studies.</p><p><strong>Results: </strong>After construction of a de novo assembly, the genome was estimated to be highly polymorphic and of ~600Mbp in size. 33,235 SNPs were thereafter selected to assess genomic diversity and differentiation among four populations collected from Scandinavia, Scotland, and Spain. Global F<sub>ST</sub> among these populations was 0.015-0.092. Approximately 4% of the investigated loci were identified as putative global outliers, and ~ 1% within Scandinavia. SNPs showing large divergence (F<sub>ST</sub> > 0.15) were picked as candidate diagnostic markers for population assignment. One hundred seventy-three of the most diagnostic SNPs between the two Scandinavian populations were validated by genotyping 47 individuals from each end of the species' Scandinavian distribution range. Sixty-nine of these SNPs were significantly (p < 0.05) differentiated (mean F<sub>ST_173_loci</sub> = 0.065, F<sub>ST_69_loci</sub> = 0.140). Using these validated SNPs, individuals were assigned with high probability (≥ 94%) to their populations of origin.</p><p><strong>Conclusions: </strong>Goldsinny wrasse displays a highly polymorphic genome, and substantial population genomic structure. Diversifying selection likely affects population structuring globally and within Scandinavia. The diagnostic loci identified now provide a promising and cost-efficient tool to investigate goldsinny wrasse populations further.</p>\",\"PeriodicalId\":9197,\"journal\":{\"name\":\"BMC Genetics\",\"volume\":\" \",\"pages\":\"118\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12863-020-00921-8\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12863-020-00921-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12863-020-00921-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Genome wide analysis reveals genetic divergence between Goldsinny wrasse populations.
Background: Marine fish populations are often characterized by high levels of gene flow and correspondingly low genetic divergence. This presents a challenge to define management units. Goldsinny wrasse (Ctenolabrus rupestris) is a heavily exploited species due to its importance as a cleaner-fish in commercial salmonid aquaculture. However, at the present, the population genetic structure of this species is still largely unresolved. Here, full-genome sequencing was used to produce the first genomic reference for this species, to study population-genomic divergence among four geographically distinct populations, and, to identify informative SNP markers for future studies.
Results: After construction of a de novo assembly, the genome was estimated to be highly polymorphic and of ~600Mbp in size. 33,235 SNPs were thereafter selected to assess genomic diversity and differentiation among four populations collected from Scandinavia, Scotland, and Spain. Global FST among these populations was 0.015-0.092. Approximately 4% of the investigated loci were identified as putative global outliers, and ~ 1% within Scandinavia. SNPs showing large divergence (FST > 0.15) were picked as candidate diagnostic markers for population assignment. One hundred seventy-three of the most diagnostic SNPs between the two Scandinavian populations were validated by genotyping 47 individuals from each end of the species' Scandinavian distribution range. Sixty-nine of these SNPs were significantly (p < 0.05) differentiated (mean FST_173_loci = 0.065, FST_69_loci = 0.140). Using these validated SNPs, individuals were assigned with high probability (≥ 94%) to their populations of origin.
Conclusions: Goldsinny wrasse displays a highly polymorphic genome, and substantial population genomic structure. Diversifying selection likely affects population structuring globally and within Scandinavia. The diagnostic loci identified now provide a promising and cost-efficient tool to investigate goldsinny wrasse populations further.
期刊介绍:
BMC Genetics is an open access, peer-reviewed journal that considers articles on all aspects of inheritance and variation in individuals and among populations.