R E De la Vega, M J Coenen, S A Müller, C V Nagelli, N P Quirk, C Lopez de Padilla, C H Evans
{"title":"FK506 对大鼠股骨骺端临界大小缺损愈合的影响","authors":"R E De la Vega, M J Coenen, S A Müller, C V Nagelli, N P Quirk, C Lopez de Padilla, C H Evans","doi":"10.22203/eCM.v040a10","DOIUrl":null,"url":null,"abstract":"<p><p>There is much interest in understanding the influence of the immune system on bone healing, including a number of reports suggesting a beneficial effect of FK506 (tacrolimus) in this regard. The influence of FK506 in a rat, femoral, critical size defect was examined using locally implanted, recombinant, human (rh) BMP-2 and adenovirally-transduced, autologous, adipose-derived mesenchymal stromal cells (AD-MSCs) expressing BMP-2. FK506 was delivered systemically using an implanted osmotic pump. Empty defects and those implanted with unmodified AD-MSCs did not heal in the presence or absence of FK506. Defects treated with rhBMP-2 healed with a large callus containing thin cortices and wispy trabeculae; this, too, was unaffected by FK506. A third of defects implanted with adenovirally-transduced AD-MSCs healed, but this improved to 100 % in the presence of FK506. New bone formed in response to BMP-2 synthesised endogenously by the genetically modified cells had a slimmer callus than those healed by rhBMP-2, with improved cortication and advanced reconstitution of marrow. These results suggest that FK506 may have had little effect on the intrinsic biology of bone healing, but improved healing in response to adenovirally-transduced cells by inhibiting immune responses to the first-generation adenovirus used here. Because the genetically modified cells produced bone of higher quality at far lower doses of BMP-2, this approach should be explored in subsequent research.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"40 ","pages":"160-171"},"PeriodicalIF":3.2000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/77/d5/nihms-1660254.PMC7816824.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of FK506 on the healing of diaphyseal, critical size defects in the rat femur.\",\"authors\":\"R E De la Vega, M J Coenen, S A Müller, C V Nagelli, N P Quirk, C Lopez de Padilla, C H Evans\",\"doi\":\"10.22203/eCM.v040a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is much interest in understanding the influence of the immune system on bone healing, including a number of reports suggesting a beneficial effect of FK506 (tacrolimus) in this regard. The influence of FK506 in a rat, femoral, critical size defect was examined using locally implanted, recombinant, human (rh) BMP-2 and adenovirally-transduced, autologous, adipose-derived mesenchymal stromal cells (AD-MSCs) expressing BMP-2. FK506 was delivered systemically using an implanted osmotic pump. Empty defects and those implanted with unmodified AD-MSCs did not heal in the presence or absence of FK506. Defects treated with rhBMP-2 healed with a large callus containing thin cortices and wispy trabeculae; this, too, was unaffected by FK506. A third of defects implanted with adenovirally-transduced AD-MSCs healed, but this improved to 100 % in the presence of FK506. New bone formed in response to BMP-2 synthesised endogenously by the genetically modified cells had a slimmer callus than those healed by rhBMP-2, with improved cortication and advanced reconstitution of marrow. These results suggest that FK506 may have had little effect on the intrinsic biology of bone healing, but improved healing in response to adenovirally-transduced cells by inhibiting immune responses to the first-generation adenovirus used here. Because the genetically modified cells produced bone of higher quality at far lower doses of BMP-2, this approach should be explored in subsequent research.</p>\",\"PeriodicalId\":11849,\"journal\":{\"name\":\"European cells & materials\",\"volume\":\"40 \",\"pages\":\"160-171\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/77/d5/nihms-1660254.PMC7816824.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European cells & materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22203/eCM.v040a10\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European cells & materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22203/eCM.v040a10","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Effects of FK506 on the healing of diaphyseal, critical size defects in the rat femur.
There is much interest in understanding the influence of the immune system on bone healing, including a number of reports suggesting a beneficial effect of FK506 (tacrolimus) in this regard. The influence of FK506 in a rat, femoral, critical size defect was examined using locally implanted, recombinant, human (rh) BMP-2 and adenovirally-transduced, autologous, adipose-derived mesenchymal stromal cells (AD-MSCs) expressing BMP-2. FK506 was delivered systemically using an implanted osmotic pump. Empty defects and those implanted with unmodified AD-MSCs did not heal in the presence or absence of FK506. Defects treated with rhBMP-2 healed with a large callus containing thin cortices and wispy trabeculae; this, too, was unaffected by FK506. A third of defects implanted with adenovirally-transduced AD-MSCs healed, but this improved to 100 % in the presence of FK506. New bone formed in response to BMP-2 synthesised endogenously by the genetically modified cells had a slimmer callus than those healed by rhBMP-2, with improved cortication and advanced reconstitution of marrow. These results suggest that FK506 may have had little effect on the intrinsic biology of bone healing, but improved healing in response to adenovirally-transduced cells by inhibiting immune responses to the first-generation adenovirus used here. Because the genetically modified cells produced bone of higher quality at far lower doses of BMP-2, this approach should be explored in subsequent research.
期刊介绍:
eCM provides an interdisciplinary forum for publication of preclinical research in the musculoskeletal field (Trauma, Maxillofacial (including dental), Spine and Orthopaedics).
The clinical relevance of the work must be briefly mentioned within the abstract, and in more detail in the paper. Poor abstracts which do not concisely cover the paper contents will not be sent for review. Incremental steps in research will not be entertained by eCM journal.Cross-disciplinary papers that go across our scope areas are welcomed.