Yi-Shiou Tseng, Wen-Bin Wu, Yun Chen, Feili Lo Yang, Ming-Chieh Ma
{"title":"小肠切除增加大鼠高血氧肾中草酸和柠檬酸转运蛋白的表达和草酸钙晶体的形成。","authors":"Yi-Shiou Tseng, Wen-Bin Wu, Yun Chen, Feili Lo Yang, Ming-Chieh Ma","doi":"10.1042/CS20200973","DOIUrl":null,"url":null,"abstract":"<p><p>Short bowel (SB) increases the risk of kidney stones. However, the underlying mechanism is unclear. Here, we examined how SB affected renal oxalate and citrate handlings for in vivo hyperoxaluric rats and in vitro tubular cells. SB was induced by small intestine resection in male Wistar rats. Sham-operated controls had no resection. After 7 days of recovery, the rats were divided into control, SB (both fed with distilled water), ethylene glycol (EG), and SB+EG (both fed with 0.75% EG for hyperoxaluric induction) groups for 28 days. We collected the plasma, 24 h of urine, kidney, and intestine tissues for analysis. Hypocitraturia was found and persisted up to 28 days for the SB group. Hypocalcemia and high plasma parathyroid hormone (PTH) levels were found in the 28-day SB rats. SB aggravated EG-mediated oxalate nephropathy by fostering hyperoxaluria and hypocitraturia, and increasing the degree of supersaturation and calcium oxalate (CaOx) crystal deposition. These effects were associated with renal up-regulations of the oxalate transporter solute carrier family 26 (Slc26)a6 and citrate transporter sodium-dependent dicarboxylate cotransporter-1 (NaDC-1) but not Slc26a2. The effects of PTH on the SB kidneys were then examined in NRK-52E tubular cells. Recombinant PTH attenuated oxalate-mediated cell injury and up-regulated NaDC-1 via protein kinase A (PKA) activation. PTH, however, showed no additive effects on oxalate-induced Slc26a6 and NaDC-1 up-regulation. Together, these results demonstrated that renal NaDC-1 upregulation-induced hypocitraturia weakened the defense against Slc26a6-mediated hyperoxaluria in SB kidneys for excess CaOx crystal formation. Increased tubular NaDC-1 expression caused by SB relied on PTH.</p>","PeriodicalId":519494,"journal":{"name":"Clinical Science (London, England : 1979)","volume":" ","pages":"2565-2580"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/32/35/cs-134-cs20200973.PMC7557498.pdf","citationCount":"2","resultStr":"{\"title\":\"Small intestine resection increases oxalate and citrate transporter expression and calcium oxalate crystal formation in rat hyperoxaluric kidneys.\",\"authors\":\"Yi-Shiou Tseng, Wen-Bin Wu, Yun Chen, Feili Lo Yang, Ming-Chieh Ma\",\"doi\":\"10.1042/CS20200973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Short bowel (SB) increases the risk of kidney stones. However, the underlying mechanism is unclear. Here, we examined how SB affected renal oxalate and citrate handlings for in vivo hyperoxaluric rats and in vitro tubular cells. SB was induced by small intestine resection in male Wistar rats. Sham-operated controls had no resection. After 7 days of recovery, the rats were divided into control, SB (both fed with distilled water), ethylene glycol (EG), and SB+EG (both fed with 0.75% EG for hyperoxaluric induction) groups for 28 days. We collected the plasma, 24 h of urine, kidney, and intestine tissues for analysis. Hypocitraturia was found and persisted up to 28 days for the SB group. Hypocalcemia and high plasma parathyroid hormone (PTH) levels were found in the 28-day SB rats. SB aggravated EG-mediated oxalate nephropathy by fostering hyperoxaluria and hypocitraturia, and increasing the degree of supersaturation and calcium oxalate (CaOx) crystal deposition. These effects were associated with renal up-regulations of the oxalate transporter solute carrier family 26 (Slc26)a6 and citrate transporter sodium-dependent dicarboxylate cotransporter-1 (NaDC-1) but not Slc26a2. The effects of PTH on the SB kidneys were then examined in NRK-52E tubular cells. Recombinant PTH attenuated oxalate-mediated cell injury and up-regulated NaDC-1 via protein kinase A (PKA) activation. PTH, however, showed no additive effects on oxalate-induced Slc26a6 and NaDC-1 up-regulation. Together, these results demonstrated that renal NaDC-1 upregulation-induced hypocitraturia weakened the defense against Slc26a6-mediated hyperoxaluria in SB kidneys for excess CaOx crystal formation. Increased tubular NaDC-1 expression caused by SB relied on PTH.</p>\",\"PeriodicalId\":519494,\"journal\":{\"name\":\"Clinical Science (London, England : 1979)\",\"volume\":\" \",\"pages\":\"2565-2580\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/32/35/cs-134-cs20200973.PMC7557498.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Science (London, England : 1979)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1042/CS20200973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Science (London, England : 1979)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20200973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Small intestine resection increases oxalate and citrate transporter expression and calcium oxalate crystal formation in rat hyperoxaluric kidneys.
Short bowel (SB) increases the risk of kidney stones. However, the underlying mechanism is unclear. Here, we examined how SB affected renal oxalate and citrate handlings for in vivo hyperoxaluric rats and in vitro tubular cells. SB was induced by small intestine resection in male Wistar rats. Sham-operated controls had no resection. After 7 days of recovery, the rats were divided into control, SB (both fed with distilled water), ethylene glycol (EG), and SB+EG (both fed with 0.75% EG for hyperoxaluric induction) groups for 28 days. We collected the plasma, 24 h of urine, kidney, and intestine tissues for analysis. Hypocitraturia was found and persisted up to 28 days for the SB group. Hypocalcemia and high plasma parathyroid hormone (PTH) levels were found in the 28-day SB rats. SB aggravated EG-mediated oxalate nephropathy by fostering hyperoxaluria and hypocitraturia, and increasing the degree of supersaturation and calcium oxalate (CaOx) crystal deposition. These effects were associated with renal up-regulations of the oxalate transporter solute carrier family 26 (Slc26)a6 and citrate transporter sodium-dependent dicarboxylate cotransporter-1 (NaDC-1) but not Slc26a2. The effects of PTH on the SB kidneys were then examined in NRK-52E tubular cells. Recombinant PTH attenuated oxalate-mediated cell injury and up-regulated NaDC-1 via protein kinase A (PKA) activation. PTH, however, showed no additive effects on oxalate-induced Slc26a6 and NaDC-1 up-regulation. Together, these results demonstrated that renal NaDC-1 upregulation-induced hypocitraturia weakened the defense against Slc26a6-mediated hyperoxaluria in SB kidneys for excess CaOx crystal formation. Increased tubular NaDC-1 expression caused by SB relied on PTH.