Min Fu, Xumei Zhang, Xuguang Zhang, Liu Yang, Suhui Luo, Huan Liu
{"title":"虾青素在秀丽隐杆线虫自噬中延长寿命的作用。","authors":"Min Fu, Xumei Zhang, Xuguang Zhang, Liu Yang, Suhui Luo, Huan Liu","doi":"10.1089/rej.2020.2355","DOIUrl":null,"url":null,"abstract":"<p><p>Astaxanthin (AST), a xanthophyll belonging to the family of carotenoids, is a potent antioxidant. The effect of AST on longevity and its physiological and molecular mechanism are still unclear. In this study, we proved that AST could prolong the life span of <i>Caenorhabditis elegans</i>. To uncover whether AST could delay aging by upregulating autophagy, we measured the expression of autophagy gene and the life span of autophagy gene bec-1 mutant nematodes, and the results showed that the expression of autophagy gene was upregulated after AST intervention and the disruption of bec-1 weakened the extension of the life span. To explore the molecular mechanism of AST-induced autophagy upregulation, we knocked out the daf-16 or hlh-30 (key genes of insulin/insulin growth factor-1 [IGF-1] signal pathway or target of rapamycin [TOR] signal pathway) by RNA interference, and the expression of autophagy gene lgg-1 decreased. Collectively, our results strongly suggest that autophagy, which is both the insulin/IGF-1 signal pathway dependent and TOR signal pathway dependent, plays a role in the prolongation of the life span of <i>Caenorhabditis elegans</i> by AST.</p>","PeriodicalId":20979,"journal":{"name":"Rejuvenation research","volume":"24 3","pages":"198-205"},"PeriodicalIF":2.2000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/rej.2020.2355","citationCount":"13","resultStr":"{\"title\":\"Autophagy Plays a Role in the Prolongation of the Life Span of <i>Caenorhabditis elegans</i> by Astaxanthin.\",\"authors\":\"Min Fu, Xumei Zhang, Xuguang Zhang, Liu Yang, Suhui Luo, Huan Liu\",\"doi\":\"10.1089/rej.2020.2355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Astaxanthin (AST), a xanthophyll belonging to the family of carotenoids, is a potent antioxidant. The effect of AST on longevity and its physiological and molecular mechanism are still unclear. In this study, we proved that AST could prolong the life span of <i>Caenorhabditis elegans</i>. To uncover whether AST could delay aging by upregulating autophagy, we measured the expression of autophagy gene and the life span of autophagy gene bec-1 mutant nematodes, and the results showed that the expression of autophagy gene was upregulated after AST intervention and the disruption of bec-1 weakened the extension of the life span. To explore the molecular mechanism of AST-induced autophagy upregulation, we knocked out the daf-16 or hlh-30 (key genes of insulin/insulin growth factor-1 [IGF-1] signal pathway or target of rapamycin [TOR] signal pathway) by RNA interference, and the expression of autophagy gene lgg-1 decreased. Collectively, our results strongly suggest that autophagy, which is both the insulin/IGF-1 signal pathway dependent and TOR signal pathway dependent, plays a role in the prolongation of the life span of <i>Caenorhabditis elegans</i> by AST.</p>\",\"PeriodicalId\":20979,\"journal\":{\"name\":\"Rejuvenation research\",\"volume\":\"24 3\",\"pages\":\"198-205\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/rej.2020.2355\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rejuvenation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/rej.2020.2355\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/11/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rejuvenation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/rej.2020.2355","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Autophagy Plays a Role in the Prolongation of the Life Span of Caenorhabditis elegans by Astaxanthin.
Astaxanthin (AST), a xanthophyll belonging to the family of carotenoids, is a potent antioxidant. The effect of AST on longevity and its physiological and molecular mechanism are still unclear. In this study, we proved that AST could prolong the life span of Caenorhabditis elegans. To uncover whether AST could delay aging by upregulating autophagy, we measured the expression of autophagy gene and the life span of autophagy gene bec-1 mutant nematodes, and the results showed that the expression of autophagy gene was upregulated after AST intervention and the disruption of bec-1 weakened the extension of the life span. To explore the molecular mechanism of AST-induced autophagy upregulation, we knocked out the daf-16 or hlh-30 (key genes of insulin/insulin growth factor-1 [IGF-1] signal pathway or target of rapamycin [TOR] signal pathway) by RNA interference, and the expression of autophagy gene lgg-1 decreased. Collectively, our results strongly suggest that autophagy, which is both the insulin/IGF-1 signal pathway dependent and TOR signal pathway dependent, plays a role in the prolongation of the life span of Caenorhabditis elegans by AST.
期刊介绍:
Rejuvenation Research publishes cutting-edge, peer-reviewed research on rejuvenation therapies in the laboratory and the clinic. The Journal focuses on key explorations and advances that may ultimately contribute to slowing or reversing the aging process, and covers topics such as cardiovascular aging, DNA damage and repair, cloning, and cell immortalization and senescence.
Rejuvenation Research coverage includes:
Cell immortalization and senescence
Pluripotent stem cells
DNA damage/repair
Gene targeting, gene therapy, and genomics
Growth factors and nutrient supply/sensing
Immunosenescence
Comparative biology of aging
Tissue engineering
Late-life pathologies (cardiovascular, neurodegenerative and others)
Public policy and social context.