{"title":"癌症数据kNN分类的鲁棒距离度量。","authors":"Rezvan Ehsani, Finn Drabløs","doi":"10.1177/1176935120965542","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>k</i>-Nearest Neighbor (<i>k</i>NN) classifier represents a simple and very general approach to classification. Still, the performance of <i>k</i>NN classifiers can often compete with more complex machine-learning algorithms. The core of <i>k</i>NN depends on a \"guilt by association\" principle where classification is performed by measuring the similarity between a query and a set of training patterns, often computed as distances. The relative performance of <i>k</i>NN classifiers is closely linked to the choice of distance or similarity measure, and it is therefore relevant to investigate the effect of using different distance measures when comparing biomedical data. In this study on classification of cancer data sets, we have used both common and novel distance measures, including the novel distance measures Sobolev and Fisher, and we have evaluated the performance of <i>k</i>NN with these distances on 4 cancer data sets of different type. We find that the performance when using the novel distance measures is comparable to the performance with more well-established measures, in particular for the Sobolev distance. We define a robust ranking of all the distance measures according to overall performance. Several distance measures show robust performance in <i>k</i>NN over several data sets, in particular the Hassanat, Sobolev, and Manhattan measures. Some of the other measures show good performance on selected data sets but seem to be more sensitive to the nature of the classification data. It is therefore important to benchmark distance measures on similar data prior to classification to identify the most suitable measure in each case.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"19 ","pages":"1176935120965542"},"PeriodicalIF":2.4000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1176935120965542","citationCount":"33","resultStr":"{\"title\":\"Robust Distance Measures for <i>k</i>NN Classification of Cancer Data.\",\"authors\":\"Rezvan Ehsani, Finn Drabløs\",\"doi\":\"10.1177/1176935120965542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>k</i>-Nearest Neighbor (<i>k</i>NN) classifier represents a simple and very general approach to classification. Still, the performance of <i>k</i>NN classifiers can often compete with more complex machine-learning algorithms. The core of <i>k</i>NN depends on a \\\"guilt by association\\\" principle where classification is performed by measuring the similarity between a query and a set of training patterns, often computed as distances. The relative performance of <i>k</i>NN classifiers is closely linked to the choice of distance or similarity measure, and it is therefore relevant to investigate the effect of using different distance measures when comparing biomedical data. In this study on classification of cancer data sets, we have used both common and novel distance measures, including the novel distance measures Sobolev and Fisher, and we have evaluated the performance of <i>k</i>NN with these distances on 4 cancer data sets of different type. We find that the performance when using the novel distance measures is comparable to the performance with more well-established measures, in particular for the Sobolev distance. We define a robust ranking of all the distance measures according to overall performance. Several distance measures show robust performance in <i>k</i>NN over several data sets, in particular the Hassanat, Sobolev, and Manhattan measures. Some of the other measures show good performance on selected data sets but seem to be more sensitive to the nature of the classification data. It is therefore important to benchmark distance measures on similar data prior to classification to identify the most suitable measure in each case.</p>\",\"PeriodicalId\":35418,\"journal\":{\"name\":\"Cancer Informatics\",\"volume\":\"19 \",\"pages\":\"1176935120965542\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1176935120965542\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1176935120965542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1176935120965542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Robust Distance Measures for kNN Classification of Cancer Data.
The k-Nearest Neighbor (kNN) classifier represents a simple and very general approach to classification. Still, the performance of kNN classifiers can often compete with more complex machine-learning algorithms. The core of kNN depends on a "guilt by association" principle where classification is performed by measuring the similarity between a query and a set of training patterns, often computed as distances. The relative performance of kNN classifiers is closely linked to the choice of distance or similarity measure, and it is therefore relevant to investigate the effect of using different distance measures when comparing biomedical data. In this study on classification of cancer data sets, we have used both common and novel distance measures, including the novel distance measures Sobolev and Fisher, and we have evaluated the performance of kNN with these distances on 4 cancer data sets of different type. We find that the performance when using the novel distance measures is comparable to the performance with more well-established measures, in particular for the Sobolev distance. We define a robust ranking of all the distance measures according to overall performance. Several distance measures show robust performance in kNN over several data sets, in particular the Hassanat, Sobolev, and Manhattan measures. Some of the other measures show good performance on selected data sets but seem to be more sensitive to the nature of the classification data. It is therefore important to benchmark distance measures on similar data prior to classification to identify the most suitable measure in each case.
期刊介绍:
The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.