来自肺炎链球菌的神经氨酸酶A的催化和凝集素结构域能够进行分子间组装:对生物膜形成的影响。

IF 5.5 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
FEBS Journal Pub Date : 2021-05-01 Epub Date: 2020-11-11 DOI:10.1111/febs.15610
Yana Sharapova, Vytas Švedas, Dmitry Suplatov
{"title":"来自肺炎链球菌的神经氨酸酶A的催化和凝集素结构域能够进行分子间组装:对生物膜形成的影响。","authors":"Yana Sharapova,&nbsp;Vytas Švedas,&nbsp;Dmitry Suplatov","doi":"10.1111/febs.15610","DOIUrl":null,"url":null,"abstract":"<p><p>Neuraminidase A from Streptococcus pneumoniae (NanA) is a cell wall-bound modular enzyme containing one lectin and one catalytic domain. Unlike homologous NanB and NanC expressed by the same bacterium, the two domains within one NanA molecule do not form a stable interaction and are spatially separated by a 16-amino acid-long flexible linker. In this work, the ability of NanA to form intermolecular assemblies was characterized using the methods of molecular modeling and bioinformatic analysis based on crystallographic data and by bringing together previously published experimental data. It was concluded that two catalytic domains, as well as one catalytic and one lectin domain, originating from two cell wall-bound NanA molecules, can interact through a previously uncharacterized interdomain interface to form complexes stabilized by a network of intermolecular hydrogen bonds and salt bridges. Supercomputer modeling strongly indicated that artocarpin, an earlier experimentally discovered inhibitor of the pneumococcal biofilm formation, is able to bind to a site located in the catalytic domain of one NanA entity and prevent its interaction with the lectin or catalytic domain of another NanA entity, thus directly precluding the generation of intermolecular assemblies. The revealed structural adaptation is discussed as one plausible mechanism of noncatalytic participation of this potentially key pathogenicity enzyme in pneumococcal biofilm formation.</p>","PeriodicalId":12261,"journal":{"name":"FEBS Journal","volume":"288 10","pages":"3217-3230"},"PeriodicalIF":5.5000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/febs.15610","citationCount":"4","resultStr":"{\"title\":\"Catalytic and lectin domains in neuraminidase A from Streptococcus pneumoniae are capable of an intermolecular assembly: Implications for biofilm formation.\",\"authors\":\"Yana Sharapova,&nbsp;Vytas Švedas,&nbsp;Dmitry Suplatov\",\"doi\":\"10.1111/febs.15610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuraminidase A from Streptococcus pneumoniae (NanA) is a cell wall-bound modular enzyme containing one lectin and one catalytic domain. Unlike homologous NanB and NanC expressed by the same bacterium, the two domains within one NanA molecule do not form a stable interaction and are spatially separated by a 16-amino acid-long flexible linker. In this work, the ability of NanA to form intermolecular assemblies was characterized using the methods of molecular modeling and bioinformatic analysis based on crystallographic data and by bringing together previously published experimental data. It was concluded that two catalytic domains, as well as one catalytic and one lectin domain, originating from two cell wall-bound NanA molecules, can interact through a previously uncharacterized interdomain interface to form complexes stabilized by a network of intermolecular hydrogen bonds and salt bridges. Supercomputer modeling strongly indicated that artocarpin, an earlier experimentally discovered inhibitor of the pneumococcal biofilm formation, is able to bind to a site located in the catalytic domain of one NanA entity and prevent its interaction with the lectin or catalytic domain of another NanA entity, thus directly precluding the generation of intermolecular assemblies. The revealed structural adaptation is discussed as one plausible mechanism of noncatalytic participation of this potentially key pathogenicity enzyme in pneumococcal biofilm formation.</p>\",\"PeriodicalId\":12261,\"journal\":{\"name\":\"FEBS Journal\",\"volume\":\"288 10\",\"pages\":\"3217-3230\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/febs.15610\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.15610\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/11/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/febs.15610","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

来自肺炎链球菌(NanA)的神经氨酸酶A是一种细胞壁结合的模块化酶,含有一个凝集素和一个催化结构域。与同一细菌表达的同源NanB和NanC不同,一个NanA分子内的两个结构域不形成稳定的相互作用,而是由一个16个氨基酸长的柔性连接体在空间上分开。在这项工作中,利用分子建模和基于晶体学数据的生物信息学分析方法,并通过汇集先前发表的实验数据,对NanA形成分子间组装的能力进行了表征。结果表明,两个催化结构域,以及一个催化结构域和一个凝集素结构域,源自两个细胞壁结合的NanA分子,可以通过一个以前未被表征的结构域间界面相互作用,形成由分子间氢键和盐桥网络稳定的配合物。超级计算机模型强烈表明,早期实验发现的肺炎球菌生物膜形成抑制剂artocarpin能够结合位于一种NanA实体的催化结构域的位点,并阻止其与另一种NanA实体的凝集素或催化结构域的相互作用,从而直接阻止分子间组装的产生。揭示的结构适应被认为是这种潜在的关键致病性酶在肺炎球菌生物膜形成中非催化参与的一种可能的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catalytic and lectin domains in neuraminidase A from Streptococcus pneumoniae are capable of an intermolecular assembly: Implications for biofilm formation.

Neuraminidase A from Streptococcus pneumoniae (NanA) is a cell wall-bound modular enzyme containing one lectin and one catalytic domain. Unlike homologous NanB and NanC expressed by the same bacterium, the two domains within one NanA molecule do not form a stable interaction and are spatially separated by a 16-amino acid-long flexible linker. In this work, the ability of NanA to form intermolecular assemblies was characterized using the methods of molecular modeling and bioinformatic analysis based on crystallographic data and by bringing together previously published experimental data. It was concluded that two catalytic domains, as well as one catalytic and one lectin domain, originating from two cell wall-bound NanA molecules, can interact through a previously uncharacterized interdomain interface to form complexes stabilized by a network of intermolecular hydrogen bonds and salt bridges. Supercomputer modeling strongly indicated that artocarpin, an earlier experimentally discovered inhibitor of the pneumococcal biofilm formation, is able to bind to a site located in the catalytic domain of one NanA entity and prevent its interaction with the lectin or catalytic domain of another NanA entity, thus directly precluding the generation of intermolecular assemblies. The revealed structural adaptation is discussed as one plausible mechanism of noncatalytic participation of this potentially key pathogenicity enzyme in pneumococcal biofilm formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEBS Journal
FEBS Journal 生物-生化与分子生物学
CiteScore
11.70
自引率
1.90%
发文量
375
审稿时长
1 months
期刊介绍: The FEBS Journal is an international journal devoted to the rapid publication of full-length papers covering a wide range of topics in any area of the molecular life sciences. The criteria for acceptance are originality and high quality research, which will provide novel perspectives in a specific area of research, and will be of interest to our broad readership. The journal does not accept papers that describe the expression of specific genes and proteins or test the effect of a drug or reagent, without presenting any biological significance. Papers describing bioinformatics, modelling or structural studies of specific systems or molecules should include experimental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信