在常规胎儿超声扫描中使用探针运动跟踪区分操作员技能。

Yipei Wang, Richard Droste, Jianbo Jiao, Harshita Sharma, Lior Drukker, Aris T Papageorghiou, J Alison Noble
{"title":"在常规胎儿超声扫描中使用探针运动跟踪区分操作员技能。","authors":"Yipei Wang, Richard Droste, Jianbo Jiao, Harshita Sharma, Lior Drukker, Aris T Papageorghiou, J Alison Noble","doi":"10.1007/978-3-030-60334-2_18","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we consider differentiating operator skill during fetal ultrasound scanning using probe motion tracking. We present a novel convolutional neural network-based deep learning framework to model ultrasound probe motion in order to classify operator skill levels, that is invariant to operators' personal scanning styles. In this study, probe motion data during routine second-trimester fetal ultrasound scanning was acquired by operators of known experience levels (2 newly-qualified operators and 10 expert operators). The results demonstrate that the proposed model can successfully learn underlying probe motion features that distinguish operator skill levels during routine fetal ultrasound with 95% accuracy.</p>","PeriodicalId":93127,"journal":{"name":"Medical ultrasound, and preterm, perinatal and paediatric image analysis","volume":"12437 ","pages":"180-188"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116256/pdf/EMS96575.pdf","citationCount":"0","resultStr":"{\"title\":\"Differentiating Operator Skill during Routine Fetal Ultrasound Scanning using Probe Motion Tracking.\",\"authors\":\"Yipei Wang, Richard Droste, Jianbo Jiao, Harshita Sharma, Lior Drukker, Aris T Papageorghiou, J Alison Noble\",\"doi\":\"10.1007/978-3-030-60334-2_18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we consider differentiating operator skill during fetal ultrasound scanning using probe motion tracking. We present a novel convolutional neural network-based deep learning framework to model ultrasound probe motion in order to classify operator skill levels, that is invariant to operators' personal scanning styles. In this study, probe motion data during routine second-trimester fetal ultrasound scanning was acquired by operators of known experience levels (2 newly-qualified operators and 10 expert operators). The results demonstrate that the proposed model can successfully learn underlying probe motion features that distinguish operator skill levels during routine fetal ultrasound with 95% accuracy.</p>\",\"PeriodicalId\":93127,\"journal\":{\"name\":\"Medical ultrasound, and preterm, perinatal and paediatric image analysis\",\"volume\":\"12437 \",\"pages\":\"180-188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116256/pdf/EMS96575.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical ultrasound, and preterm, perinatal and paediatric image analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-60334-2_18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical ultrasound, and preterm, perinatal and paediatric image analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-60334-2_18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑区分操作人员的技能在胎儿超声扫描中使用探针运动跟踪。我们提出了一种新的基于卷积神经网络的深度学习框架来模拟超声探头的运动,以便对操作员的技能水平进行分类,该分类不受操作员个人扫描风格的影响。在本研究中,由已知经验水平的操作人员(2名新合格操作人员和10名专业操作人员)获取常规妊娠中期胎儿超声扫描时的探针运动数据。结果表明,该模型能够以95%的准确率成功学习到胎儿常规超声过程中区分操作人员技能水平的潜在探针运动特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentiating Operator Skill during Routine Fetal Ultrasound Scanning using Probe Motion Tracking.

In this paper, we consider differentiating operator skill during fetal ultrasound scanning using probe motion tracking. We present a novel convolutional neural network-based deep learning framework to model ultrasound probe motion in order to classify operator skill levels, that is invariant to operators' personal scanning styles. In this study, probe motion data during routine second-trimester fetal ultrasound scanning was acquired by operators of known experience levels (2 newly-qualified operators and 10 expert operators). The results demonstrate that the proposed model can successfully learn underlying probe motion features that distinguish operator skill levels during routine fetal ultrasound with 95% accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信