{"title":"碘甲状腺原氨酸可以阻断程序性死亡配体1 (PDL1)活性:一项电子药效团建模和虚拟筛选研究。","authors":"Navid Pourzardosht, Zahra Sadat Hashemi, Maysam Mard-Soltani, Abolfazl Jahangiri, Mohammad Reza Rahbar, Alireza Zakeri, Ebrahim Mirzajani, Saeed Khalili","doi":"10.1080/10799893.2020.1839765","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The interaction between PD-L1 on tumor cells and the programmed death 1 (PD1) on immune cells helps them to escape the immune system elimination. Therefore, developing therapeutic agents to block this interaction has garnered a lot of attention as a therapeutic approach. In the present study, we have tried to screen for an inhibitory compound to inhibit the interaction between the PD1/PD-L1 molecules.</p><p><strong>Methods: </strong>In this regard, the structure of PD-L1 and its inhibitor were prepared and employed to generate an e-Pharmacophore model. A library of approved compounds was prepared and toxicity analysis using Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) predictor was performed. The built e-Pharmacophore model was validated and used to screen the prepared compound library. Ligand docking and binding energy calculation were performed on the screened ligands.</p><p><strong>Results: </strong>A seven-feature e-Pharmacophore model was generated using the PD-L1 complex. All of the compounds within the library passed the ADMET criteria. Performing the virtual screening, only 79 compounds have survived the criteria to fit four pharmacophoric features. The compound with the highest binding energy was the liothyronine (T3).</p><p><strong>Conclusion: </strong>The ability of T3 in PD1/PD-L1 checkpoint blockade along with its potential in T4 reduction could be a desirable combination in cancer treatment. These abilities of T3 could be used to restore the ability of the immune system to eliminate tumor cells.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":"42 1","pages":"34-42"},"PeriodicalIF":2.6000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10799893.2020.1839765","citationCount":"11","resultStr":"{\"title\":\"Liothyronine could block the programmed death-ligand 1 (PDL1) activity: an e-Pharmacophore modeling and virtual screening study.\",\"authors\":\"Navid Pourzardosht, Zahra Sadat Hashemi, Maysam Mard-Soltani, Abolfazl Jahangiri, Mohammad Reza Rahbar, Alireza Zakeri, Ebrahim Mirzajani, Saeed Khalili\",\"doi\":\"10.1080/10799893.2020.1839765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The interaction between PD-L1 on tumor cells and the programmed death 1 (PD1) on immune cells helps them to escape the immune system elimination. Therefore, developing therapeutic agents to block this interaction has garnered a lot of attention as a therapeutic approach. In the present study, we have tried to screen for an inhibitory compound to inhibit the interaction between the PD1/PD-L1 molecules.</p><p><strong>Methods: </strong>In this regard, the structure of PD-L1 and its inhibitor were prepared and employed to generate an e-Pharmacophore model. A library of approved compounds was prepared and toxicity analysis using Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) predictor was performed. The built e-Pharmacophore model was validated and used to screen the prepared compound library. Ligand docking and binding energy calculation were performed on the screened ligands.</p><p><strong>Results: </strong>A seven-feature e-Pharmacophore model was generated using the PD-L1 complex. All of the compounds within the library passed the ADMET criteria. Performing the virtual screening, only 79 compounds have survived the criteria to fit four pharmacophoric features. The compound with the highest binding energy was the liothyronine (T3).</p><p><strong>Conclusion: </strong>The ability of T3 in PD1/PD-L1 checkpoint blockade along with its potential in T4 reduction could be a desirable combination in cancer treatment. These abilities of T3 could be used to restore the ability of the immune system to eliminate tumor cells.</p>\",\"PeriodicalId\":16962,\"journal\":{\"name\":\"Journal of Receptors and Signal Transduction\",\"volume\":\"42 1\",\"pages\":\"34-42\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10799893.2020.1839765\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Receptors and Signal Transduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10799893.2020.1839765\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/10/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2020.1839765","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Liothyronine could block the programmed death-ligand 1 (PDL1) activity: an e-Pharmacophore modeling and virtual screening study.
Purpose: The interaction between PD-L1 on tumor cells and the programmed death 1 (PD1) on immune cells helps them to escape the immune system elimination. Therefore, developing therapeutic agents to block this interaction has garnered a lot of attention as a therapeutic approach. In the present study, we have tried to screen for an inhibitory compound to inhibit the interaction between the PD1/PD-L1 molecules.
Methods: In this regard, the structure of PD-L1 and its inhibitor were prepared and employed to generate an e-Pharmacophore model. A library of approved compounds was prepared and toxicity analysis using Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) predictor was performed. The built e-Pharmacophore model was validated and used to screen the prepared compound library. Ligand docking and binding energy calculation were performed on the screened ligands.
Results: A seven-feature e-Pharmacophore model was generated using the PD-L1 complex. All of the compounds within the library passed the ADMET criteria. Performing the virtual screening, only 79 compounds have survived the criteria to fit four pharmacophoric features. The compound with the highest binding energy was the liothyronine (T3).
Conclusion: The ability of T3 in PD1/PD-L1 checkpoint blockade along with its potential in T4 reduction could be a desirable combination in cancer treatment. These abilities of T3 could be used to restore the ability of the immune system to eliminate tumor cells.
期刊介绍:
Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services:
BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.