{"title":"由两个拟人数字连接而成的三波那契数。","authors":"Mahadi Ddamulira","doi":"10.1007/s13398-020-00933-0","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math> <msub><mrow><mo>(</mo> <msub><mi>T</mi> <mi>n</mi></msub> <mo>)</mo></mrow> <mrow><mi>n</mi> <mo>≥</mo> <mn>0</mn></mrow> </msub> </math> be the sequence of Tribonacci numbers defined by <math> <mrow><msub><mi>T</mi> <mn>0</mn></msub> <mo>=</mo> <mn>0</mn></mrow> </math> , <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> <mo>=</mo> <msub><mi>T</mi> <mn>2</mn></msub> <mo>=</mo> <mn>1</mn></mrow> </math> , and <math> <mrow><msub><mi>T</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>3</mn></mrow> </msub> <mo>=</mo> <msub><mi>T</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>2</mn></mrow> </msub> <mo>+</mo> <msub><mi>T</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> <mo>+</mo> <msub><mi>T</mi> <mi>n</mi></msub> </mrow> </math> for all <math><mrow><mi>n</mi> <mo>≥</mo> <mn>0</mn></mrow> </math> . In this note, we use of lower bounds for linear forms in logarithms of algebraic numbers and the Baker-Davenport reduction procedure to find all Tribonacci numbers that are concatenations of two repdigits.</p>","PeriodicalId":54471,"journal":{"name":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","volume":"114 4","pages":"203"},"PeriodicalIF":1.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13398-020-00933-0","citationCount":"22","resultStr":"{\"title\":\"Tribonacci numbers that are concatenations of two repdigits.\",\"authors\":\"Mahadi Ddamulira\",\"doi\":\"10.1007/s13398-020-00933-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Let <math> <msub><mrow><mo>(</mo> <msub><mi>T</mi> <mi>n</mi></msub> <mo>)</mo></mrow> <mrow><mi>n</mi> <mo>≥</mo> <mn>0</mn></mrow> </msub> </math> be the sequence of Tribonacci numbers defined by <math> <mrow><msub><mi>T</mi> <mn>0</mn></msub> <mo>=</mo> <mn>0</mn></mrow> </math> , <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> <mo>=</mo> <msub><mi>T</mi> <mn>2</mn></msub> <mo>=</mo> <mn>1</mn></mrow> </math> , and <math> <mrow><msub><mi>T</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>3</mn></mrow> </msub> <mo>=</mo> <msub><mi>T</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>2</mn></mrow> </msub> <mo>+</mo> <msub><mi>T</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> <mo>+</mo> <msub><mi>T</mi> <mi>n</mi></msub> </mrow> </math> for all <math><mrow><mi>n</mi> <mo>≥</mo> <mn>0</mn></mrow> </math> . In this note, we use of lower bounds for linear forms in logarithms of algebraic numbers and the Baker-Davenport reduction procedure to find all Tribonacci numbers that are concatenations of two repdigits.</p>\",\"PeriodicalId\":54471,\"journal\":{\"name\":\"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas\",\"volume\":\"114 4\",\"pages\":\"203\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13398-020-00933-0\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13398-020-00933-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13398-020-00933-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 22
摘要
让T (n) n≥0被T Tribonacci之序列数字:0 = 0,T = T = 2 = 1, T和T n + 3 = n + 2 + T T n + 1 + n的所有n≥0。在这篇文章中,我们用下舱的线条来线性使用对数的数字和面包师减少的程序来寻找所有的数字,这些数字是两个重复的结果。
Tribonacci numbers that are concatenations of two repdigits.
Let be the sequence of Tribonacci numbers defined by , , and for all . In this note, we use of lower bounds for linear forms in logarithms of algebraic numbers and the Baker-Davenport reduction procedure to find all Tribonacci numbers that are concatenations of two repdigits.
期刊介绍:
The journal publishes, in English language only, high-quality Research Articles covering Algebra; Applied Mathematics; Computational Sciences; Geometry and Topology; Mathematical Analysis; Statistics and Operations Research. Also featured are Survey Articles in every mathematical field.