由两个拟人数字连接而成的三波那契数。

IF 1.8 2区 数学 Q1 MATHEMATICS
Mahadi Ddamulira
{"title":"由两个拟人数字连接而成的三波那契数。","authors":"Mahadi Ddamulira","doi":"10.1007/s13398-020-00933-0","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math> <msub><mrow><mo>(</mo> <msub><mi>T</mi> <mi>n</mi></msub> <mo>)</mo></mrow> <mrow><mi>n</mi> <mo>≥</mo> <mn>0</mn></mrow> </msub> </math> be the sequence of Tribonacci numbers defined by <math> <mrow><msub><mi>T</mi> <mn>0</mn></msub> <mo>=</mo> <mn>0</mn></mrow> </math> , <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> <mo>=</mo> <msub><mi>T</mi> <mn>2</mn></msub> <mo>=</mo> <mn>1</mn></mrow> </math> , and <math> <mrow><msub><mi>T</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>3</mn></mrow> </msub> <mo>=</mo> <msub><mi>T</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>2</mn></mrow> </msub> <mo>+</mo> <msub><mi>T</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> <mo>+</mo> <msub><mi>T</mi> <mi>n</mi></msub> </mrow> </math> for all <math><mrow><mi>n</mi> <mo>≥</mo> <mn>0</mn></mrow> </math> . In this note, we use of lower bounds for linear forms in logarithms of algebraic numbers and the Baker-Davenport reduction procedure to find all Tribonacci numbers that are concatenations of two repdigits.</p>","PeriodicalId":54471,"journal":{"name":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","volume":"114 4","pages":"203"},"PeriodicalIF":1.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13398-020-00933-0","citationCount":"22","resultStr":"{\"title\":\"Tribonacci numbers that are concatenations of two repdigits.\",\"authors\":\"Mahadi Ddamulira\",\"doi\":\"10.1007/s13398-020-00933-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Let <math> <msub><mrow><mo>(</mo> <msub><mi>T</mi> <mi>n</mi></msub> <mo>)</mo></mrow> <mrow><mi>n</mi> <mo>≥</mo> <mn>0</mn></mrow> </msub> </math> be the sequence of Tribonacci numbers defined by <math> <mrow><msub><mi>T</mi> <mn>0</mn></msub> <mo>=</mo> <mn>0</mn></mrow> </math> , <math> <mrow><msub><mi>T</mi> <mn>1</mn></msub> <mo>=</mo> <msub><mi>T</mi> <mn>2</mn></msub> <mo>=</mo> <mn>1</mn></mrow> </math> , and <math> <mrow><msub><mi>T</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>3</mn></mrow> </msub> <mo>=</mo> <msub><mi>T</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>2</mn></mrow> </msub> <mo>+</mo> <msub><mi>T</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> <mo>+</mo> <msub><mi>T</mi> <mi>n</mi></msub> </mrow> </math> for all <math><mrow><mi>n</mi> <mo>≥</mo> <mn>0</mn></mrow> </math> . In this note, we use of lower bounds for linear forms in logarithms of algebraic numbers and the Baker-Davenport reduction procedure to find all Tribonacci numbers that are concatenations of two repdigits.</p>\",\"PeriodicalId\":54471,\"journal\":{\"name\":\"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas\",\"volume\":\"114 4\",\"pages\":\"203\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13398-020-00933-0\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13398-020-00933-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13398-020-00933-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 22

摘要

让T (n) n≥0被T Tribonacci之序列数字:0 = 0,T = T = 2 = 1, T和T n + 3 = n + 2 + T T n + 1 + n的所有n≥0。在这篇文章中,我们用下舱的线条来线性使用对数的数字和面包师减少的程序来寻找所有的数字,这些数字是两个重复的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tribonacci numbers that are concatenations of two repdigits.

Let ( T n ) n 0 be the sequence of Tribonacci numbers defined by T 0 = 0 , T 1 = T 2 = 1 , and T n + 3 = T n + 2 + T n + 1 + T n for all n 0 . In this note, we use of lower bounds for linear forms in logarithms of algebraic numbers and the Baker-Davenport reduction procedure to find all Tribonacci numbers that are concatenations of two repdigits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
17.20%
发文量
151
审稿时长
>12 weeks
期刊介绍: The journal publishes, in English language only, high-quality Research Articles covering Algebra; Applied Mathematics; Computational Sciences; Geometry and Topology; Mathematical Analysis; Statistics and Operations Research. Also featured are Survey Articles in every mathematical field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信