伪光谱法控制肿瘤用药剂量

IF 1.9 4区 生物学 Q4 CELL BIOLOGY
Mostafa Nazari, Morteza Nazari, Mohammad Hadi Noori Skandari
{"title":"伪光谱法控制肿瘤用药剂量","authors":"Mostafa Nazari,&nbsp;Morteza Nazari,&nbsp;Mohammad Hadi Noori Skandari","doi":"10.1049/iet-syb.2020.0054","DOIUrl":null,"url":null,"abstract":"<div>\n <p>A mixed chemotherapy–immunotherapy treatment protocol is developed for cancer treatment. Chemotherapy pushes the trajectory of the system towards the desired equilibrium point, and then immunotherapy alters the dynamics of the system by affecting the parameters of the system. A co-existing cancerous equilibrium point is considered as the desired equilibrium point instead of the tumour-free equilibrium. Chemotherapy protocol is derived using the pseudo-spectral (PS) controller due to its high convergence rate and simple implementation structure. Thus, one of the contributions of this study is simplifying the design procedure and reducing the controller computational load in comparison with Lyapunov-based controllers. In this method, an infinite-horizon optimal control problem is proposed for a non-linear cancer model. Then, the infinite-horizon optimal control of cancer is transformed into a non-linear programming problem. The efficient Legendre PS scheme is suggested to solve the proposed problem. Then, the dynamics of the system is modified by immunotherapy is another contribution. To restrict the upper limit of the chemo-drug dose based on the age of the patients, a Mamdani fuzzy system is designed, which is not present yet. Simulation results on four different dynamics cases how the efficiency of the proposed treatment strategy.</p>\n </div>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687205/pdf/SYB2-14-261.pdf","citationCount":"0","resultStr":"{\"title\":\"Pseudo-spectral method for controlling the drug dosage in cancer\",\"authors\":\"Mostafa Nazari,&nbsp;Morteza Nazari,&nbsp;Mohammad Hadi Noori Skandari\",\"doi\":\"10.1049/iet-syb.2020.0054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>A mixed chemotherapy–immunotherapy treatment protocol is developed for cancer treatment. Chemotherapy pushes the trajectory of the system towards the desired equilibrium point, and then immunotherapy alters the dynamics of the system by affecting the parameters of the system. A co-existing cancerous equilibrium point is considered as the desired equilibrium point instead of the tumour-free equilibrium. Chemotherapy protocol is derived using the pseudo-spectral (PS) controller due to its high convergence rate and simple implementation structure. Thus, one of the contributions of this study is simplifying the design procedure and reducing the controller computational load in comparison with Lyapunov-based controllers. In this method, an infinite-horizon optimal control problem is proposed for a non-linear cancer model. Then, the infinite-horizon optimal control of cancer is transformed into a non-linear programming problem. The efficient Legendre PS scheme is suggested to solve the proposed problem. Then, the dynamics of the system is modified by immunotherapy is another contribution. To restrict the upper limit of the chemo-drug dose based on the age of the patients, a Mamdani fuzzy system is designed, which is not present yet. Simulation results on four different dynamics cases how the efficiency of the proposed treatment strategy.</p>\\n </div>\",\"PeriodicalId\":50379,\"journal\":{\"name\":\"IET Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687205/pdf/SYB2-14-261.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2020.0054\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2020.0054","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

一种混合化疗-免疫治疗方案被开发用于癌症治疗。化疗将系统的轨迹推向所需的平衡点,然后免疫治疗通过影响系统的参数来改变系统的动力学。考虑一个共存的癌细胞平衡点作为期望的平衡点,而不是无肿瘤平衡点。基于伪谱控制器的化疗方案具有收敛速度快、实现结构简单等优点。因此,与基于lyapunov的控制器相比,本研究的贡献之一是简化了设计过程并减少了控制器的计算负荷。在此方法中,提出了一个非线性癌症模型的无限视界最优控制问题。然后,将癌症的无限视界最优控制问题转化为非线性规划问题。提出了一种高效的Legendre PS方案来解决上述问题。然后,通过免疫疗法改变系统的动力学是另一个贡献。为了根据患者的年龄限制化疗药物的剂量上限,设计了一个尚不存在的Mamdani模糊系统。仿真结果表明,在四种不同的动力学情况下,所提出的处理策略的效率如何。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pseudo-spectral method for controlling the drug dosage in cancer

Pseudo-spectral method for controlling the drug dosage in cancer

A mixed chemotherapy–immunotherapy treatment protocol is developed for cancer treatment. Chemotherapy pushes the trajectory of the system towards the desired equilibrium point, and then immunotherapy alters the dynamics of the system by affecting the parameters of the system. A co-existing cancerous equilibrium point is considered as the desired equilibrium point instead of the tumour-free equilibrium. Chemotherapy protocol is derived using the pseudo-spectral (PS) controller due to its high convergence rate and simple implementation structure. Thus, one of the contributions of this study is simplifying the design procedure and reducing the controller computational load in comparison with Lyapunov-based controllers. In this method, an infinite-horizon optimal control problem is proposed for a non-linear cancer model. Then, the infinite-horizon optimal control of cancer is transformed into a non-linear programming problem. The efficient Legendre PS scheme is suggested to solve the proposed problem. Then, the dynamics of the system is modified by immunotherapy is another contribution. To restrict the upper limit of the chemo-drug dose based on the age of the patients, a Mamdani fuzzy system is designed, which is not present yet. Simulation results on four different dynamics cases how the efficiency of the proposed treatment strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信