Jiaming Chen, Ali Valehi, Fatemeh Afghah, Abolfazl Razi
{"title":"使用受控空间变换的心电信号偏差分析框架","authors":"Jiaming Chen, Ali Valehi, Fatemeh Afghah, Abolfazl Razi","doi":"10.1109/bhi.2019.8834617","DOIUrl":null,"url":null,"abstract":"<p><p>Current automated heart monitoring tools use supervised learning methods to recognize heart disorders based on ECG signal morphology. We develop a new ECG processing algorithm that enables early prediction of disorders through a novel deviation analysis. The idea is developing a patient-specific ECG baseline and characterizing the deviation of signal morphology towards any of the abnormality classes with specific morphological features. To enable this feature, a novel controlled non-linear transformation is designed to achieve maximal symme- try in the feature space. Our results using benchmark MIT-BIH database show that the proposed method achieves a classification accuracy of 96% and can be used to trigger yellow alarms to warn patients from increased risk of upcoming heart abnormalities (5% to 10% increase with respect to normal conditions). This feature can be used in health monitoring devices to advise patients to take preventive and precaution actions before critical situations.</p>","PeriodicalId":72024,"journal":{"name":"... IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE-EMBS International Conference on Biomedical and Health Informatics","volume":"2019 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552434/pdf/nihms-1634684.pdf","citationCount":"0","resultStr":"{\"title\":\"A Deviation Analysis Framework for ECG Signals Using Controlled Spatial Transformation.\",\"authors\":\"Jiaming Chen, Ali Valehi, Fatemeh Afghah, Abolfazl Razi\",\"doi\":\"10.1109/bhi.2019.8834617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current automated heart monitoring tools use supervised learning methods to recognize heart disorders based on ECG signal morphology. We develop a new ECG processing algorithm that enables early prediction of disorders through a novel deviation analysis. The idea is developing a patient-specific ECG baseline and characterizing the deviation of signal morphology towards any of the abnormality classes with specific morphological features. To enable this feature, a novel controlled non-linear transformation is designed to achieve maximal symme- try in the feature space. Our results using benchmark MIT-BIH database show that the proposed method achieves a classification accuracy of 96% and can be used to trigger yellow alarms to warn patients from increased risk of upcoming heart abnormalities (5% to 10% increase with respect to normal conditions). This feature can be used in health monitoring devices to advise patients to take preventive and precaution actions before critical situations.</p>\",\"PeriodicalId\":72024,\"journal\":{\"name\":\"... IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE-EMBS International Conference on Biomedical and Health Informatics\",\"volume\":\"2019 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552434/pdf/nihms-1634684.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE-EMBS International Conference on Biomedical and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/bhi.2019.8834617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/9/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE-EMBS International Conference on Biomedical and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/bhi.2019.8834617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/9/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A Deviation Analysis Framework for ECG Signals Using Controlled Spatial Transformation.
Current automated heart monitoring tools use supervised learning methods to recognize heart disorders based on ECG signal morphology. We develop a new ECG processing algorithm that enables early prediction of disorders through a novel deviation analysis. The idea is developing a patient-specific ECG baseline and characterizing the deviation of signal morphology towards any of the abnormality classes with specific morphological features. To enable this feature, a novel controlled non-linear transformation is designed to achieve maximal symme- try in the feature space. Our results using benchmark MIT-BIH database show that the proposed method achieves a classification accuracy of 96% and can be used to trigger yellow alarms to warn patients from increased risk of upcoming heart abnormalities (5% to 10% increase with respect to normal conditions). This feature can be used in health monitoring devices to advise patients to take preventive and precaution actions before critical situations.