{"title":"COVID-19 传输动态研究:带有霍普夫分岔的 SEIR 模型在时间延迟影响下的稳定性分析。","authors":"M Radha, S Balamuralitharan","doi":"10.1186/s13662-020-02958-6","DOIUrl":null,"url":null,"abstract":"<p><p>This paper deals with a general SEIR model for the coronavirus disease 2019 (COVID-19) with the effect of time delay proposed. We get the stability theorems for the disease-free equilibrium and provide adequate situations of the COVID-19 transmission dynamics equilibrium of present and absent cases. A Hopf bifurcation parameter <i>τ</i> concerns the effects of time delay and we demonstrate that the locally asymptotic stability holds for the present equilibrium. The reproduction number is brief in less than or greater than one, and it effectively is controlling the COVID-19 infection outbreak and subsequently reveals insight into understanding the patterns of the flare-up. We have included eight parameters and the least square method allows us to estimate the initial values for the Indian COVID-19 pandemic from real-life data. It is one of India's current pandemic models that have been studied for the time being. This Covid19 SEIR model can apply with or without delay to all country's current pandemic region, after estimating parameter values from their data. The sensitivity of seven parameters has also been explored. The paper also examines the impact of immune response time delay and the importance of determining essential parameters such as the transmission rate using sensitivity indices analysis. The numerical experiment is calculated to illustrate the theoretical results.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2020 1","pages":"523"},"PeriodicalIF":4.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513461/pdf/","citationCount":"0","resultStr":"{\"title\":\"A study on COVID-19 transmission dynamics: stability analysis of SEIR model with Hopf bifurcation for effect of time delay.\",\"authors\":\"M Radha, S Balamuralitharan\",\"doi\":\"10.1186/s13662-020-02958-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper deals with a general SEIR model for the coronavirus disease 2019 (COVID-19) with the effect of time delay proposed. We get the stability theorems for the disease-free equilibrium and provide adequate situations of the COVID-19 transmission dynamics equilibrium of present and absent cases. A Hopf bifurcation parameter <i>τ</i> concerns the effects of time delay and we demonstrate that the locally asymptotic stability holds for the present equilibrium. The reproduction number is brief in less than or greater than one, and it effectively is controlling the COVID-19 infection outbreak and subsequently reveals insight into understanding the patterns of the flare-up. We have included eight parameters and the least square method allows us to estimate the initial values for the Indian COVID-19 pandemic from real-life data. It is one of India's current pandemic models that have been studied for the time being. This Covid19 SEIR model can apply with or without delay to all country's current pandemic region, after estimating parameter values from their data. The sensitivity of seven parameters has also been explored. The paper also examines the impact of immune response time delay and the importance of determining essential parameters such as the transmission rate using sensitivity indices analysis. The numerical experiment is calculated to illustrate the theoretical results.</p>\",\"PeriodicalId\":53311,\"journal\":{\"name\":\"Advances in Difference Equations\",\"volume\":\"2020 1\",\"pages\":\"523\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513461/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Difference Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13662-020-02958-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-020-02958-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
A study on COVID-19 transmission dynamics: stability analysis of SEIR model with Hopf bifurcation for effect of time delay.
This paper deals with a general SEIR model for the coronavirus disease 2019 (COVID-19) with the effect of time delay proposed. We get the stability theorems for the disease-free equilibrium and provide adequate situations of the COVID-19 transmission dynamics equilibrium of present and absent cases. A Hopf bifurcation parameter τ concerns the effects of time delay and we demonstrate that the locally asymptotic stability holds for the present equilibrium. The reproduction number is brief in less than or greater than one, and it effectively is controlling the COVID-19 infection outbreak and subsequently reveals insight into understanding the patterns of the flare-up. We have included eight parameters and the least square method allows us to estimate the initial values for the Indian COVID-19 pandemic from real-life data. It is one of India's current pandemic models that have been studied for the time being. This Covid19 SEIR model can apply with or without delay to all country's current pandemic region, after estimating parameter values from their data. The sensitivity of seven parameters has also been explored. The paper also examines the impact of immune response time delay and the importance of determining essential parameters such as the transmission rate using sensitivity indices analysis. The numerical experiment is calculated to illustrate the theoretical results.
期刊介绍:
The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.
The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between.
The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations.
Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.