Arianne Bermas, Rebecca S. Shapiro, Jennifer Geddes-McAlister
下载PDF
{"title":"新型隐球菌抗真菌耐药性的实验进化","authors":"Arianne Bermas, Rebecca S. Shapiro, Jennifer Geddes-McAlister","doi":"10.1002/cpmc.116","DOIUrl":null,"url":null,"abstract":"<p><i>Cryptococcus neoformans</i>, an opportunistic yeast-like fungal pathogen, has demonstrated resistance to all major classes of antifungals used to treat cryptococcal meningitis. However, combatting this fungal disease is an ongoing challenge among clinicians due to the evolution of antifungal-resistant strains. The limited availability of clinically approved antifungals has heightened the urgency to investigate the molecular mechanisms underscoring resistance. Studying how a fungal pathogen evolves to an antifungal drug in vitro using experimental evolution provides a simple, yet powerful approach to study the mechanisms of antifungal resistance. Experimental evolution involves the serial passaging of microbial populations under laboratory conditions, such that adaptive mutations can occur and be monitored in real time. This technique plays a key role in investigating the mechanisms of antifungal resistance in <i>C. neoformans</i>, and this can help in developing novel strategies to combat the emergence of resistance. Here, we outline how to make overnight cultures of <i>C. neoformans</i> and how to perform experimental evolution, and we present a spectrophotometric analysis to evaluate the evolution of antifungal resistance. © 2020 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: Growth and sample preparation of <i>Cryptococcus neoformans</i></p><p><b>Basic Protocol 2</b>: Experimental evolution of antifungal resistance</p><p><b>Basic Protocol 3</b>: Analyzing the evolution of antifungal resistance</p><p><b>Basic Protocol 4</b>: Glycerol stock preparation</p>","PeriodicalId":39967,"journal":{"name":"Current Protocols in Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpmc.116","citationCount":"3","resultStr":"{\"title\":\"Experimental Evolution of Antifungal Resistance in Cryptococcus neoformans\",\"authors\":\"Arianne Bermas, Rebecca S. Shapiro, Jennifer Geddes-McAlister\",\"doi\":\"10.1002/cpmc.116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Cryptococcus neoformans</i>, an opportunistic yeast-like fungal pathogen, has demonstrated resistance to all major classes of antifungals used to treat cryptococcal meningitis. However, combatting this fungal disease is an ongoing challenge among clinicians due to the evolution of antifungal-resistant strains. The limited availability of clinically approved antifungals has heightened the urgency to investigate the molecular mechanisms underscoring resistance. Studying how a fungal pathogen evolves to an antifungal drug in vitro using experimental evolution provides a simple, yet powerful approach to study the mechanisms of antifungal resistance. Experimental evolution involves the serial passaging of microbial populations under laboratory conditions, such that adaptive mutations can occur and be monitored in real time. This technique plays a key role in investigating the mechanisms of antifungal resistance in <i>C. neoformans</i>, and this can help in developing novel strategies to combat the emergence of resistance. Here, we outline how to make overnight cultures of <i>C. neoformans</i> and how to perform experimental evolution, and we present a spectrophotometric analysis to evaluate the evolution of antifungal resistance. © 2020 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: Growth and sample preparation of <i>Cryptococcus neoformans</i></p><p><b>Basic Protocol 2</b>: Experimental evolution of antifungal resistance</p><p><b>Basic Protocol 3</b>: Analyzing the evolution of antifungal resistance</p><p><b>Basic Protocol 4</b>: Glycerol stock preparation</p>\",\"PeriodicalId\":39967,\"journal\":{\"name\":\"Current Protocols in Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpmc.116\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpmc.116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpmc.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
引用
批量引用