Changlin Zhai, Gang Qian, Huajun Wu, Haihua Pan, Shuoyin Xie, Zhewei Sun, Pingyang Shao, Guanmin Tang, Huilin Hu, Song Zhang
{"title":"敲低circ_0060745可通过抑制NF-κB活化来缓解急性心肌梗死。","authors":"Changlin Zhai, Gang Qian, Huajun Wu, Haihua Pan, Shuoyin Xie, Zhewei Sun, Pingyang Shao, Guanmin Tang, Huilin Hu, Song Zhang","doi":"10.1111/jcmm.15748","DOIUrl":null,"url":null,"abstract":"<p><p>It has been shown that circRNAs are involved in the development of heart diseases. However, few studies explored the role of circRNAs in acute myocardial infarction (AMI). The present study aims to investigate the role of circ_0060745 in the pathogenesis of AMI. We found that the expression of circ_0060745 was significantly increased in the myocardium of AMI mice and was mainly expressed in myocardial fibroblasts. The knockdown of circ_0060745 decreased myocardial infarct size and improved systolic cardiac functions after AMI. The knockdown of circ_0060745 in cardiac fibroblasts inhibited the migration of peritoneal macrophage, the apoptosis of cardiomyocytes and the expressions of IL-6, IL-12, IL-1β, TNF-α and NF-κB under hypoxia. Overexpression of circ_0060745 caused an increase in infarct size and worsened cardiac functions after AMI. In summary, our findings showed that knockdown of circ_0060745 mitigates AMI by suppressing cardiomyocyte apoptosis and inflammation. These protective effects could be attributed to inhibition of NF-κB activation.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/jcmm.15748","citationCount":"21","resultStr":"{\"title\":\"Knockdown of circ_0060745 alleviates acute myocardial infarction by suppressing NF-κB activation.\",\"authors\":\"Changlin Zhai, Gang Qian, Huajun Wu, Haihua Pan, Shuoyin Xie, Zhewei Sun, Pingyang Shao, Guanmin Tang, Huilin Hu, Song Zhang\",\"doi\":\"10.1111/jcmm.15748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been shown that circRNAs are involved in the development of heart diseases. However, few studies explored the role of circRNAs in acute myocardial infarction (AMI). The present study aims to investigate the role of circ_0060745 in the pathogenesis of AMI. We found that the expression of circ_0060745 was significantly increased in the myocardium of AMI mice and was mainly expressed in myocardial fibroblasts. The knockdown of circ_0060745 decreased myocardial infarct size and improved systolic cardiac functions after AMI. The knockdown of circ_0060745 in cardiac fibroblasts inhibited the migration of peritoneal macrophage, the apoptosis of cardiomyocytes and the expressions of IL-6, IL-12, IL-1β, TNF-α and NF-κB under hypoxia. Overexpression of circ_0060745 caused an increase in infarct size and worsened cardiac functions after AMI. In summary, our findings showed that knockdown of circ_0060745 mitigates AMI by suppressing cardiomyocyte apoptosis and inflammation. These protective effects could be attributed to inhibition of NF-κB activation.</p>\",\"PeriodicalId\":15215,\"journal\":{\"name\":\"Journal of Cellular and Molecular Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/jcmm.15748\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular and Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jcmm.15748\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jcmm.15748","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Knockdown of circ_0060745 alleviates acute myocardial infarction by suppressing NF-κB activation.
It has been shown that circRNAs are involved in the development of heart diseases. However, few studies explored the role of circRNAs in acute myocardial infarction (AMI). The present study aims to investigate the role of circ_0060745 in the pathogenesis of AMI. We found that the expression of circ_0060745 was significantly increased in the myocardium of AMI mice and was mainly expressed in myocardial fibroblasts. The knockdown of circ_0060745 decreased myocardial infarct size and improved systolic cardiac functions after AMI. The knockdown of circ_0060745 in cardiac fibroblasts inhibited the migration of peritoneal macrophage, the apoptosis of cardiomyocytes and the expressions of IL-6, IL-12, IL-1β, TNF-α and NF-κB under hypoxia. Overexpression of circ_0060745 caused an increase in infarct size and worsened cardiac functions after AMI. In summary, our findings showed that knockdown of circ_0060745 mitigates AMI by suppressing cardiomyocyte apoptosis and inflammation. These protective effects could be attributed to inhibition of NF-κB activation.
期刊介绍:
Bridging physiology and cellular medicine, and molecular biology and molecular therapeutics, Journal of Cellular and Molecular Medicine publishes basic research that furthers our understanding of the cellular and molecular mechanisms of disease and translational studies that convert this knowledge into therapeutic approaches.