{"title":"腺苷和生酮治疗。","authors":"David N Ruskin, Masahito Kawamura, Susan A Masino","doi":"10.1089/caff.2020.0011","DOIUrl":null,"url":null,"abstract":"<p><p>It is well known that the neuromodulator adenosine, acting through the adenosine A<sub>1</sub> receptor subtype, can limit or stop seizures. In 2008, adenosine was proposed as a key component of the anticonvulsant mechanism of the ketogenic diet (KD), a very low carbohydrate diet that can be highly effective in drug-refractory epilepsy. In this study, we review the accumulated data on the intersection among adenosine, ketosis, and anticonvulsant/antiepileptogenic effects. In several rodent models of epilepsy and seizures, antiseizure effects of ketogenic treatments (the KD itself, exogenous ketone bodies, medium-chain triglycerides or fatty acids) are reversed by administration of an adenosine A<sub>1</sub> receptor antagonist. In addition, KD treatment elevates extracellular adenosine and tissue adenosine content in brain. Efforts to maintain or mimic a ketogenic milieu in brain slices reveal a state of reduced excitability produced by pre- and postsynaptic adenosine A<sub>1</sub> receptor-based effects. Long-lasting seizure reduction may be due to adenosine-based epigenetic effects. In conclusion, there is accumulating evidence for an adenosinergic anticonvulsant action in the ketogenic state. In some cases, the main trigger is mildly but consistently lowered glucose in the brain. More research is needed to investigate the importance of adenosine in the antiepileptogenic and neuroprotective effects of these treatments. Future research may begin to investigate alternative adenosine-promoting strategies to enhance the KD or to find use as treatments themselves.</p>","PeriodicalId":15112,"journal":{"name":"Journal of Caffeine and Adenosine Research","volume":"10 3","pages":"104-109"},"PeriodicalIF":1.7000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/caff.2020.0011","citationCount":"11","resultStr":"{\"title\":\"Adenosine and Ketogenic Treatments.\",\"authors\":\"David N Ruskin, Masahito Kawamura, Susan A Masino\",\"doi\":\"10.1089/caff.2020.0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is well known that the neuromodulator adenosine, acting through the adenosine A<sub>1</sub> receptor subtype, can limit or stop seizures. In 2008, adenosine was proposed as a key component of the anticonvulsant mechanism of the ketogenic diet (KD), a very low carbohydrate diet that can be highly effective in drug-refractory epilepsy. In this study, we review the accumulated data on the intersection among adenosine, ketosis, and anticonvulsant/antiepileptogenic effects. In several rodent models of epilepsy and seizures, antiseizure effects of ketogenic treatments (the KD itself, exogenous ketone bodies, medium-chain triglycerides or fatty acids) are reversed by administration of an adenosine A<sub>1</sub> receptor antagonist. In addition, KD treatment elevates extracellular adenosine and tissue adenosine content in brain. Efforts to maintain or mimic a ketogenic milieu in brain slices reveal a state of reduced excitability produced by pre- and postsynaptic adenosine A<sub>1</sub> receptor-based effects. Long-lasting seizure reduction may be due to adenosine-based epigenetic effects. In conclusion, there is accumulating evidence for an adenosinergic anticonvulsant action in the ketogenic state. In some cases, the main trigger is mildly but consistently lowered glucose in the brain. More research is needed to investigate the importance of adenosine in the antiepileptogenic and neuroprotective effects of these treatments. Future research may begin to investigate alternative adenosine-promoting strategies to enhance the KD or to find use as treatments themselves.</p>\",\"PeriodicalId\":15112,\"journal\":{\"name\":\"Journal of Caffeine and Adenosine Research\",\"volume\":\"10 3\",\"pages\":\"104-109\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/caff.2020.0011\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Caffeine and Adenosine Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/caff.2020.0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Caffeine and Adenosine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/caff.2020.0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
It is well known that the neuromodulator adenosine, acting through the adenosine A1 receptor subtype, can limit or stop seizures. In 2008, adenosine was proposed as a key component of the anticonvulsant mechanism of the ketogenic diet (KD), a very low carbohydrate diet that can be highly effective in drug-refractory epilepsy. In this study, we review the accumulated data on the intersection among adenosine, ketosis, and anticonvulsant/antiepileptogenic effects. In several rodent models of epilepsy and seizures, antiseizure effects of ketogenic treatments (the KD itself, exogenous ketone bodies, medium-chain triglycerides or fatty acids) are reversed by administration of an adenosine A1 receptor antagonist. In addition, KD treatment elevates extracellular adenosine and tissue adenosine content in brain. Efforts to maintain or mimic a ketogenic milieu in brain slices reveal a state of reduced excitability produced by pre- and postsynaptic adenosine A1 receptor-based effects. Long-lasting seizure reduction may be due to adenosine-based epigenetic effects. In conclusion, there is accumulating evidence for an adenosinergic anticonvulsant action in the ketogenic state. In some cases, the main trigger is mildly but consistently lowered glucose in the brain. More research is needed to investigate the importance of adenosine in the antiepileptogenic and neuroprotective effects of these treatments. Future research may begin to investigate alternative adenosine-promoting strategies to enhance the KD or to find use as treatments themselves.