广义灰色布朗运动的积分表示。

Wolfgang Bock, Sascha Desmettre, José Luís da Silva
{"title":"广义灰色布朗运动的积分表示。","authors":"Wolfgang Bock, Sascha Desmettre, José Luís da Silva","doi":"10.1080/17442508.2019.1641093","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we investigate the representation of a class of non-Gaussian processes, namely generalized grey Brownian motion, in terms of a weighted integral of a stochastic process which is a solution of a certain stochastic differential equation. In particular, the underlying process can be seen as a non-Gaussian extension of the Ornstein-Uhlenbeck process, hence generalizing the representation results of Muravlev, Russian Math. Surveys 66 (2), 2011 as well as Harms and Stefanovits, Stochastic Process. Appl. 129, 2019 to the non-Gaussian case.</p>","PeriodicalId":93054,"journal":{"name":"Stochastics (Abingdon, England : 2005)","volume":"92 4","pages":"552-565"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455069/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integral representation of generalized grey Brownian motion.\",\"authors\":\"Wolfgang Bock, Sascha Desmettre, José Luís da Silva\",\"doi\":\"10.1080/17442508.2019.1641093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we investigate the representation of a class of non-Gaussian processes, namely generalized grey Brownian motion, in terms of a weighted integral of a stochastic process which is a solution of a certain stochastic differential equation. In particular, the underlying process can be seen as a non-Gaussian extension of the Ornstein-Uhlenbeck process, hence generalizing the representation results of Muravlev, Russian Math. Surveys 66 (2), 2011 as well as Harms and Stefanovits, Stochastic Process. Appl. 129, 2019 to the non-Gaussian case.</p>\",\"PeriodicalId\":93054,\"journal\":{\"name\":\"Stochastics (Abingdon, England : 2005)\",\"volume\":\"92 4\",\"pages\":\"552-565\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455069/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics (Abingdon, England : 2005)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2019.1641093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics (Abingdon, England : 2005)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17442508.2019.1641093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一类非高斯过程(即广义灰色布朗运动)的表示方法,即随机过程的加权积分,它是某个随机微分方程的解。特别是,基础过程可以看作是奥恩斯坦-乌伦贝克过程的非高斯扩展,从而推广了穆拉夫列夫的表示结果,《俄罗斯数学》,第 66 (2) 卷,第 2 期,第 2 页。Surveys 66 (2), 2011 以及 Harms 和 Stefanovits, Stochastic Process.应用》,2019 年第 129 期,适用于非高斯情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integral representation of generalized grey Brownian motion.

Integral representation of generalized grey Brownian motion.

Integral representation of generalized grey Brownian motion.

Integral representation of generalized grey Brownian motion.

In this paper, we investigate the representation of a class of non-Gaussian processes, namely generalized grey Brownian motion, in terms of a weighted integral of a stochastic process which is a solution of a certain stochastic differential equation. In particular, the underlying process can be seen as a non-Gaussian extension of the Ornstein-Uhlenbeck process, hence generalizing the representation results of Muravlev, Russian Math. Surveys 66 (2), 2011 as well as Harms and Stefanovits, Stochastic Process. Appl. 129, 2019 to the non-Gaussian case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信