Valentina Garcia-Lee, Martha E Díaz-Hernandez, Jesús Chimal-Monroy
{"title":"抑制WNT/β-catenin是诱导鸡肢体肌腱发育中Scx表达的必要和充分条件。","authors":"Valentina Garcia-Lee, Martha E Díaz-Hernandez, Jesús Chimal-Monroy","doi":"10.1387/ijdb.200166jc","DOIUrl":null,"url":null,"abstract":"<p><p>The cell differentiation of the musculoskeletal system is highly coordinated during limb development. In the distal-most region of the limb, WNT and FGF released from the apical ectodermal ridge maintain mesenchymal cells in the undifferentiated stage. Once the cells stop receiving WNT and FGF, they respond to differentiation signals. Particularly during tendon development, mesenchymal cells enter the cell differentiation program once <i>Scleraxis</i> (<i>Scx</i>) gene expression occurs. Among the signals that trigger the cell differentiation programs, TGFβ signaling has been found to be closely involved in tendon differentiation. However, whether <i>Scx</i> gene expression depends merely on TGFβ signaling or other signals is still not fully understood. In the present study, considering that WNT/β-catenin is an inhibitory signal of cell differentiation, we speculated possible antagonistic or additive effects between canonical Wnt/β-catenin and TGFβ/SMAD signaling pathways to control <i>Scx</i> gene expression. We found that the blockade of WNT/β-catenin promoted <i>Scx</i> gene expression. In contrast, the inhibition of TGFβ/SMAD signaling did not maintain <i>Scx</i> gene expression. Interestingly, the blockade of both WNT/β-catenin and TGFβ/SMAD signaling at the same time promoted <i>Scx</i> gene expression. Thus the inhibition of WNT/β-catenin signaling appears to be necessary and sufficient to induce <i>Scx</i> gene expression.</p>","PeriodicalId":50329,"journal":{"name":"International Journal of Developmental Biology","volume":"65 4-5-6","pages":"395-401"},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1387/ijdb.200166jc","citationCount":"3","resultStr":"{\"title\":\"Inhibition of WNT/β-catenin is necessary and sufficient to induce <i>Scx</i> expression in developing tendons of chicken limb.\",\"authors\":\"Valentina Garcia-Lee, Martha E Díaz-Hernandez, Jesús Chimal-Monroy\",\"doi\":\"10.1387/ijdb.200166jc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cell differentiation of the musculoskeletal system is highly coordinated during limb development. In the distal-most region of the limb, WNT and FGF released from the apical ectodermal ridge maintain mesenchymal cells in the undifferentiated stage. Once the cells stop receiving WNT and FGF, they respond to differentiation signals. Particularly during tendon development, mesenchymal cells enter the cell differentiation program once <i>Scleraxis</i> (<i>Scx</i>) gene expression occurs. Among the signals that trigger the cell differentiation programs, TGFβ signaling has been found to be closely involved in tendon differentiation. However, whether <i>Scx</i> gene expression depends merely on TGFβ signaling or other signals is still not fully understood. In the present study, considering that WNT/β-catenin is an inhibitory signal of cell differentiation, we speculated possible antagonistic or additive effects between canonical Wnt/β-catenin and TGFβ/SMAD signaling pathways to control <i>Scx</i> gene expression. We found that the blockade of WNT/β-catenin promoted <i>Scx</i> gene expression. In contrast, the inhibition of TGFβ/SMAD signaling did not maintain <i>Scx</i> gene expression. Interestingly, the blockade of both WNT/β-catenin and TGFβ/SMAD signaling at the same time promoted <i>Scx</i> gene expression. Thus the inhibition of WNT/β-catenin signaling appears to be necessary and sufficient to induce <i>Scx</i> gene expression.</p>\",\"PeriodicalId\":50329,\"journal\":{\"name\":\"International Journal of Developmental Biology\",\"volume\":\"65 4-5-6\",\"pages\":\"395-401\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1387/ijdb.200166jc\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1387/ijdb.200166jc\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1387/ijdb.200166jc","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Inhibition of WNT/β-catenin is necessary and sufficient to induce Scx expression in developing tendons of chicken limb.
The cell differentiation of the musculoskeletal system is highly coordinated during limb development. In the distal-most region of the limb, WNT and FGF released from the apical ectodermal ridge maintain mesenchymal cells in the undifferentiated stage. Once the cells stop receiving WNT and FGF, they respond to differentiation signals. Particularly during tendon development, mesenchymal cells enter the cell differentiation program once Scleraxis (Scx) gene expression occurs. Among the signals that trigger the cell differentiation programs, TGFβ signaling has been found to be closely involved in tendon differentiation. However, whether Scx gene expression depends merely on TGFβ signaling or other signals is still not fully understood. In the present study, considering that WNT/β-catenin is an inhibitory signal of cell differentiation, we speculated possible antagonistic or additive effects between canonical Wnt/β-catenin and TGFβ/SMAD signaling pathways to control Scx gene expression. We found that the blockade of WNT/β-catenin promoted Scx gene expression. In contrast, the inhibition of TGFβ/SMAD signaling did not maintain Scx gene expression. Interestingly, the blockade of both WNT/β-catenin and TGFβ/SMAD signaling at the same time promoted Scx gene expression. Thus the inhibition of WNT/β-catenin signaling appears to be necessary and sufficient to induce Scx gene expression.
期刊介绍:
The International Journal of Developmental Biology (ISSN: 0214-
6282) is an independent, not for profit scholarly journal, published by
scientists, for scientists. The journal publishes papers which throw
light on our understanding of animal and plant developmental mechanisms in health and disease and, in particular, research which elucidates the developmental principles underlying stem cell properties
and cancer. Technical, historical or theoretical approaches also fall
within the scope of the journal. Criteria for acceptance include scientific excellence, novelty and quality of presentation of data and illustrations. Advantages of publishing in the journal include: rapid
publication; free unlimited color reproduction; no page charges; free
publication of online supplementary material; free publication of audio
files (MP3 type); one-to-one personalized attention at all stages
during the editorial process. An easy online submission facility and an
open online access option, by means of which papers can be published without any access restrictions. In keeping with its mission, the
journal offers free online subscriptions to academic institutions in
developing countries.