基于各向异性核的双样本统计。

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Xiuyuan Cheng, Alexander Cloninger, Ronald R Coifman
{"title":"基于各向异性核的双样本统计。","authors":"Xiuyuan Cheng,&nbsp;Alexander Cloninger,&nbsp;Ronald R Coifman","doi":"10.1093/imaiai/iaz018","DOIUrl":null,"url":null,"abstract":"<p><p>The paper introduces a new kernel-based Maximum Mean Discrepancy (MMD) statistic for measuring the distance between two distributions given finitely many multivariate samples. When the distributions are locally low-dimensional, the proposed test can be made more powerful to distinguish certain alternatives by incorporating local covariance matrices and constructing an anisotropic kernel. The kernel matrix is asymmetric; it computes the affinity between [Formula: see text] data points and a set of [Formula: see text] reference points, where [Formula: see text] can be drastically smaller than [Formula: see text]. While the proposed statistic can be viewed as a special class of Reproducing Kernel Hilbert Space MMD, the consistency of the test is proved, under mild assumptions of the kernel, as long as [Formula: see text], and a finite-sample lower bound of the testing power is obtained. Applications to flow cytometry and diffusion MRI datasets are demonstrated, which motivate the proposed approach to compare distributions.</p>","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"9 3","pages":"677-719"},"PeriodicalIF":1.4000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imaiai/iaz018","citationCount":"16","resultStr":"{\"title\":\"Two-sample statistics based on anisotropic kernels.\",\"authors\":\"Xiuyuan Cheng,&nbsp;Alexander Cloninger,&nbsp;Ronald R Coifman\",\"doi\":\"10.1093/imaiai/iaz018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The paper introduces a new kernel-based Maximum Mean Discrepancy (MMD) statistic for measuring the distance between two distributions given finitely many multivariate samples. When the distributions are locally low-dimensional, the proposed test can be made more powerful to distinguish certain alternatives by incorporating local covariance matrices and constructing an anisotropic kernel. The kernel matrix is asymmetric; it computes the affinity between [Formula: see text] data points and a set of [Formula: see text] reference points, where [Formula: see text] can be drastically smaller than [Formula: see text]. While the proposed statistic can be viewed as a special class of Reproducing Kernel Hilbert Space MMD, the consistency of the test is proved, under mild assumptions of the kernel, as long as [Formula: see text], and a finite-sample lower bound of the testing power is obtained. Applications to flow cytometry and diffusion MRI datasets are demonstrated, which motivate the proposed approach to compare distributions.</p>\",\"PeriodicalId\":45437,\"journal\":{\"name\":\"Information and Inference-A Journal of the Ima\",\"volume\":\"9 3\",\"pages\":\"677-719\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imaiai/iaz018\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Inference-A Journal of the Ima\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imaiai/iaz018\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/12/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaz018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 16

摘要

本文介绍了一种新的基于核的最大平均差异统计量,用于测量给定有限多变量样本的两个分布之间的距离。当分布是局部低维时,通过结合局部协方差矩阵和构造各向异性核,可以使所提出的测试更有效地区分某些备选方案。核矩阵是非对称的;它计算[公式:参见文本]数据点与一组[公式:参见文本]参考点之间的关联,其中[公式:参见文本]可能比[公式:参见文本]小得多。虽然所提出的统计量可以看作是一类特殊的再现核希尔伯特空间MMD,但在核的温和假设下,只要[公式:见文],就证明了检验的一致性,并得到了检验能力的有限样本下界。应用于流式细胞术和扩散MRI数据集被证明,这激发了提出的方法来比较分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-sample statistics based on anisotropic kernels.

The paper introduces a new kernel-based Maximum Mean Discrepancy (MMD) statistic for measuring the distance between two distributions given finitely many multivariate samples. When the distributions are locally low-dimensional, the proposed test can be made more powerful to distinguish certain alternatives by incorporating local covariance matrices and constructing an anisotropic kernel. The kernel matrix is asymmetric; it computes the affinity between [Formula: see text] data points and a set of [Formula: see text] reference points, where [Formula: see text] can be drastically smaller than [Formula: see text]. While the proposed statistic can be viewed as a special class of Reproducing Kernel Hilbert Space MMD, the consistency of the test is proved, under mild assumptions of the kernel, as long as [Formula: see text], and a finite-sample lower bound of the testing power is obtained. Applications to flow cytometry and diffusion MRI datasets are demonstrated, which motivate the proposed approach to compare distributions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信