动态功能连接的协方差收缩

Nicolas Honnorat, Ehsan Adeli, Qingyu Zhao, Adolf Pfefferbaum, Edith V Sullivan, Kilian Pohl
{"title":"动态功能连接的协方差收缩","authors":"Nicolas Honnorat, Ehsan Adeli, Qingyu Zhao, Adolf Pfefferbaum, Edith V Sullivan, Kilian Pohl","doi":"10.1007/978-3-030-32391-2_4","DOIUrl":null,"url":null,"abstract":"<p><p>The tracking of dynamic functional connectivity (dFC) states in resting-state fMRI scans aims to reveal how the brain sequentially processes stimuli and thoughts. Despite the recent advances in statistical methods, estimating the high dimensional dFC states from a small number of available time points remains a challenge. This paper shows that the challenge is reduced by <i>linear covariance shrinkage,</i> a statistical method used for the estimation of large covariance matrices from small number of samples. We present a computationally efficient formulation of our approach that scales dFC analysis up to full resolution resting-state fMRI scans. Experiments on synthetic data demonstrate that our approach produces dFC estimates that are closer to the ground-truth than state-of-the-art estimation approaches. When comparing methods on the rs-fMRI scans of 162 subjects, we found that our approach is better at extracting functional networks and capturing differences in rs-fMRI acquisition and diagnosis.</p>","PeriodicalId":93089,"journal":{"name":"Connectomics in neuroImaging : third International Workshop, CNI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings. CNI (Workshop) (3rd : 2019 : Shenzhen Shi, China)","volume":"11848 ","pages":"32-41"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486012/pdf/nihms-1623446.pdf","citationCount":"0","resultStr":"{\"title\":\"Covariance Shrinkage for Dynamic Functional Connectivity.\",\"authors\":\"Nicolas Honnorat, Ehsan Adeli, Qingyu Zhao, Adolf Pfefferbaum, Edith V Sullivan, Kilian Pohl\",\"doi\":\"10.1007/978-3-030-32391-2_4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The tracking of dynamic functional connectivity (dFC) states in resting-state fMRI scans aims to reveal how the brain sequentially processes stimuli and thoughts. Despite the recent advances in statistical methods, estimating the high dimensional dFC states from a small number of available time points remains a challenge. This paper shows that the challenge is reduced by <i>linear covariance shrinkage,</i> a statistical method used for the estimation of large covariance matrices from small number of samples. We present a computationally efficient formulation of our approach that scales dFC analysis up to full resolution resting-state fMRI scans. Experiments on synthetic data demonstrate that our approach produces dFC estimates that are closer to the ground-truth than state-of-the-art estimation approaches. When comparing methods on the rs-fMRI scans of 162 subjects, we found that our approach is better at extracting functional networks and capturing differences in rs-fMRI acquisition and diagnosis.</p>\",\"PeriodicalId\":93089,\"journal\":{\"name\":\"Connectomics in neuroImaging : third International Workshop, CNI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings. CNI (Workshop) (3rd : 2019 : Shenzhen Shi, China)\",\"volume\":\"11848 \",\"pages\":\"32-41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486012/pdf/nihms-1623446.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connectomics in neuroImaging : third International Workshop, CNI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings. CNI (Workshop) (3rd : 2019 : Shenzhen Shi, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-32391-2_4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connectomics in neuroImaging : third International Workshop, CNI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings. CNI (Workshop) (3rd : 2019 : Shenzhen Shi, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-32391-2_4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/10/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对静息态 fMRI 扫描中的动态功能连接(dFC)状态进行追踪,旨在揭示大脑如何有序地处理刺激和思维。尽管最近统计方法取得了进步,但从少量可用时间点估算高维 dFC 状态仍然是一项挑战。本文介绍了线性协方差收缩法,这是一种用于从少量样本中估计大协方差矩阵的统计方法。我们提出了一种计算高效的方法,可将 dFC 分析扩展到全分辨率静息态 fMRI 扫描。对合成数据的实验证明,我们的方法产生的 dFC 估计值比最先进的估计方法更接近地面实况。在对 162 名受试者的 rs-fMRI 扫描进行方法比较时,我们发现我们的方法在提取功能网络和捕捉 rs-fMRI 采集与诊断差异方面更胜一筹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covariance Shrinkage for Dynamic Functional Connectivity.

The tracking of dynamic functional connectivity (dFC) states in resting-state fMRI scans aims to reveal how the brain sequentially processes stimuli and thoughts. Despite the recent advances in statistical methods, estimating the high dimensional dFC states from a small number of available time points remains a challenge. This paper shows that the challenge is reduced by linear covariance shrinkage, a statistical method used for the estimation of large covariance matrices from small number of samples. We present a computationally efficient formulation of our approach that scales dFC analysis up to full resolution resting-state fMRI scans. Experiments on synthetic data demonstrate that our approach produces dFC estimates that are closer to the ground-truth than state-of-the-art estimation approaches. When comparing methods on the rs-fMRI scans of 162 subjects, we found that our approach is better at extracting functional networks and capturing differences in rs-fMRI acquisition and diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信