具有马尔可夫切换和媒介覆盖的延迟流行病系统的随机动力学。

IF 4.1 3区 数学 Q1 Mathematics
Advances in Difference Equations Pub Date : 2020-01-01 Epub Date: 2020-08-26 DOI:10.1186/s13662-020-02894-5
Chao Liu, Jane Heffernan
{"title":"具有马尔可夫切换和媒介覆盖的延迟流行病系统的随机动力学。","authors":"Chao Liu,&nbsp;Jane Heffernan","doi":"10.1186/s13662-020-02894-5","DOIUrl":null,"url":null,"abstract":"<p><p>A stochastic SIR system with Lévy jumps and distributed delay is developed and employed to study the combined effects of Markovian switching and media coverage on stochastic epidemiological dynamics and outcomes. Stochastic Lyapunov functions are used to prove the existence of a stationary distribution to the positive solution. Sufficient conditions for persistence in mean and the extinction of an infectious disease are also shown.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-020-02894-5","citationCount":"1","resultStr":"{\"title\":\"Stochastic dynamics in a delayed epidemic system with Markovian switching and media coverage.\",\"authors\":\"Chao Liu,&nbsp;Jane Heffernan\",\"doi\":\"10.1186/s13662-020-02894-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A stochastic SIR system with Lévy jumps and distributed delay is developed and employed to study the combined effects of Markovian switching and media coverage on stochastic epidemiological dynamics and outcomes. Stochastic Lyapunov functions are used to prove the existence of a stationary distribution to the positive solution. Sufficient conditions for persistence in mean and the extinction of an infectious disease are also shown.</p>\",\"PeriodicalId\":53311,\"journal\":{\"name\":\"Advances in Difference Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13662-020-02894-5\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Difference Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13662-020-02894-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/8/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-020-02894-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

建立了一个具有lsamvy跳跃和分布延迟的随机SIR系统,并应用该系统研究了马尔可夫切换和媒体覆盖对随机流行病学动态和结果的联合影响。利用随机李雅普诺夫函数证明了正解的平稳分布的存在性。文中还给出了传染病均值持续和灭绝的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stochastic dynamics in a delayed epidemic system with Markovian switching and media coverage.

Stochastic dynamics in a delayed epidemic system with Markovian switching and media coverage.

Stochastic dynamics in a delayed epidemic system with Markovian switching and media coverage.

Stochastic dynamics in a delayed epidemic system with Markovian switching and media coverage.

A stochastic SIR system with Lévy jumps and distributed delay is developed and employed to study the combined effects of Markovian switching and media coverage on stochastic epidemiological dynamics and outcomes. Stochastic Lyapunov functions are used to prove the existence of a stationary distribution to the positive solution. Sufficient conditions for persistence in mean and the extinction of an infectious disease are also shown.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions. The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between. The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations. Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信