{"title":"高频外周神经刺激治疗颅面疼痛。","authors":"Philip Finch, Peter Drummond","doi":"10.1159/000509665","DOIUrl":null,"url":null,"abstract":"<p><p>Since the first successful use of high-frequency electrical stimulation of trigeminal branches for treatment of facial pain in 1962, neuromodulation techniques become well established but remain greatly underutilised. Most subsequent implantation techniques and commercial devices for peripheral nerve stimulation, available until the last decade, utilised frequencies in the range 1-100 Hz. With the commercial introduction of 10-kHz spinal cord stimulation, there has been renewed interest in peripheral applications of kHz frequency neuromodulation. High-frequency biphasic stimulation causes rapid onset, reversible conduction block in mammalian nerves which might be useful in human peripheral neuromodulation applications, but the conduction block induced at kilohertz frequencies may not be the only mechanism contributing to analgesia. We discuss likely mechanisms of action of high-frequency peripheral nerve stimulation and present several clinical examples of successful use of this modality in various facial pain conditions. A change to sub-threshold higher frequencies in the 10 kHz range adds a number of distinct advantages. The lack of paresthesias is welcomed by patients. The ability to place the stimulating electrode approximately 1 cm away from the targeted nerve has an anatomical and surgical advantage.</p>","PeriodicalId":39342,"journal":{"name":"Progress in neurological surgery","volume":"35 ","pages":"85-95"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"High-Frequency Peripheral Nerve Stimulation for Craniofacial Pain.\",\"authors\":\"Philip Finch, Peter Drummond\",\"doi\":\"10.1159/000509665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since the first successful use of high-frequency electrical stimulation of trigeminal branches for treatment of facial pain in 1962, neuromodulation techniques become well established but remain greatly underutilised. Most subsequent implantation techniques and commercial devices for peripheral nerve stimulation, available until the last decade, utilised frequencies in the range 1-100 Hz. With the commercial introduction of 10-kHz spinal cord stimulation, there has been renewed interest in peripheral applications of kHz frequency neuromodulation. High-frequency biphasic stimulation causes rapid onset, reversible conduction block in mammalian nerves which might be useful in human peripheral neuromodulation applications, but the conduction block induced at kilohertz frequencies may not be the only mechanism contributing to analgesia. We discuss likely mechanisms of action of high-frequency peripheral nerve stimulation and present several clinical examples of successful use of this modality in various facial pain conditions. A change to sub-threshold higher frequencies in the 10 kHz range adds a number of distinct advantages. The lack of paresthesias is welcomed by patients. The ability to place the stimulating electrode approximately 1 cm away from the targeted nerve has an anatomical and surgical advantage.</p>\",\"PeriodicalId\":39342,\"journal\":{\"name\":\"Progress in neurological surgery\",\"volume\":\"35 \",\"pages\":\"85-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in neurological surgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000509665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in neurological surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000509665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
High-Frequency Peripheral Nerve Stimulation for Craniofacial Pain.
Since the first successful use of high-frequency electrical stimulation of trigeminal branches for treatment of facial pain in 1962, neuromodulation techniques become well established but remain greatly underutilised. Most subsequent implantation techniques and commercial devices for peripheral nerve stimulation, available until the last decade, utilised frequencies in the range 1-100 Hz. With the commercial introduction of 10-kHz spinal cord stimulation, there has been renewed interest in peripheral applications of kHz frequency neuromodulation. High-frequency biphasic stimulation causes rapid onset, reversible conduction block in mammalian nerves which might be useful in human peripheral neuromodulation applications, but the conduction block induced at kilohertz frequencies may not be the only mechanism contributing to analgesia. We discuss likely mechanisms of action of high-frequency peripheral nerve stimulation and present several clinical examples of successful use of this modality in various facial pain conditions. A change to sub-threshold higher frequencies in the 10 kHz range adds a number of distinct advantages. The lack of paresthesias is welcomed by patients. The ability to place the stimulating electrode approximately 1 cm away from the targeted nerve has an anatomical and surgical advantage.
期刊介绍:
Published since 1966, this series has become universally recognized as the most significant group of books serving neurological surgeons. Volumes feature contributions from distinguished international surgeons, who brilliantly review the literature from the perspective of their own personal experience. The result is a series of works providing critical distillations of developments of central importance to the theory and practice of neurological surgery.