Rachel Stading, Chun Chu, Xanthi Couroucli, Krithika Lingappan, Bhagavatula Moorthy
{"title":"细胞色素P4501A酶在氧化应激中的分子作用","authors":"Rachel Stading, Chun Chu, Xanthi Couroucli, Krithika Lingappan, Bhagavatula Moorthy","doi":"10.1016/j.cotox.2020.07.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span>Cytochrome P4501A (CYP1A) </span>enzymes play important roles in </span>xenobiotic<span> and endobiotic metabolism. Owing to uncoupling reactions during the enzymatic cycle, CYP1A enzymes can release reactive oxygen species (ROS) in the form of superoxide radical, hydrogen peroxide, </span></span>hydroxyl radical<span>, etc. An imbalance between production of free radicals and the ability of antioxidants to detoxify the free radicals can lead to accumulation of ROS, which in turn can lead to oxidative stress. Oxidative stress can lead to inflammation and toxicity, which in turn can cause human diseases such as bronchopulmonary disease, acute respiratory distress syndrome, </span></span>renal hypertension, etc. CYP1A enzymes, depending on the organ system, they either contribute or protect against oxidative injury. Thus, they have dual roles in regard to oxidative stress. This review presents an overview of the mechanistic relationship between CYP1A enzymes and oxidative stress in relation to various diseases in different organs (e.g. liver, lungs, heart, kidneys, and reproductive organs).</p></div>","PeriodicalId":93968,"journal":{"name":"Current opinion in toxicology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cotox.2020.07.001","citationCount":"23","resultStr":"{\"title\":\"Molecular role of cytochrome P4501A enzymes in oxidative stress\",\"authors\":\"Rachel Stading, Chun Chu, Xanthi Couroucli, Krithika Lingappan, Bhagavatula Moorthy\",\"doi\":\"10.1016/j.cotox.2020.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span><span>Cytochrome P4501A (CYP1A) </span>enzymes play important roles in </span>xenobiotic<span> and endobiotic metabolism. Owing to uncoupling reactions during the enzymatic cycle, CYP1A enzymes can release reactive oxygen species (ROS) in the form of superoxide radical, hydrogen peroxide, </span></span>hydroxyl radical<span>, etc. An imbalance between production of free radicals and the ability of antioxidants to detoxify the free radicals can lead to accumulation of ROS, which in turn can lead to oxidative stress. Oxidative stress can lead to inflammation and toxicity, which in turn can cause human diseases such as bronchopulmonary disease, acute respiratory distress syndrome, </span></span>renal hypertension, etc. CYP1A enzymes, depending on the organ system, they either contribute or protect against oxidative injury. Thus, they have dual roles in regard to oxidative stress. This review presents an overview of the mechanistic relationship between CYP1A enzymes and oxidative stress in relation to various diseases in different organs (e.g. liver, lungs, heart, kidneys, and reproductive organs).</p></div>\",\"PeriodicalId\":93968,\"journal\":{\"name\":\"Current opinion in toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.cotox.2020.07.001\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468202020300449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468202020300449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular role of cytochrome P4501A enzymes in oxidative stress
Cytochrome P4501A (CYP1A) enzymes play important roles in xenobiotic and endobiotic metabolism. Owing to uncoupling reactions during the enzymatic cycle, CYP1A enzymes can release reactive oxygen species (ROS) in the form of superoxide radical, hydrogen peroxide, hydroxyl radical, etc. An imbalance between production of free radicals and the ability of antioxidants to detoxify the free radicals can lead to accumulation of ROS, which in turn can lead to oxidative stress. Oxidative stress can lead to inflammation and toxicity, which in turn can cause human diseases such as bronchopulmonary disease, acute respiratory distress syndrome, renal hypertension, etc. CYP1A enzymes, depending on the organ system, they either contribute or protect against oxidative injury. Thus, they have dual roles in regard to oxidative stress. This review presents an overview of the mechanistic relationship between CYP1A enzymes and oxidative stress in relation to various diseases in different organs (e.g. liver, lungs, heart, kidneys, and reproductive organs).