Lakshmini Balachandar, Karla A. Montejo, Eleane Castano, Melissa Perez, Carolina Moncion, Jeremy W. Chambers, J. Luis Lujan, Jorge Riera Diaz
下载PDF
{"title":"成年小鼠脑片皮质星形胶质细胞同时Ca2+成像和光遗传学刺激","authors":"Lakshmini Balachandar, Karla A. Montejo, Eleane Castano, Melissa Perez, Carolina Moncion, Jeremy W. Chambers, J. Luis Lujan, Jorge Riera Diaz","doi":"10.1002/cpns.110","DOIUrl":null,"url":null,"abstract":"<p>Astrocytes are actively involved in a neuroprotective role in the brain, which includes scavenging reactive oxygen species to minimize tissue damage. They also modulate neuroinflammation and reactive gliosis prevalent in several brain disorders like epilepsy, Alzheimer's, and Parkinson's disease. In animal models, targeted manipulation of astrocytic function via modulation of their calcium (Ca<sup>2+</sup>) oscillations by incorporating light-sensitive cation channels like Channelrhodopsin-2 (ChR2) offers a promising avenue in influencing the long-term progression of these disorders. However, using adult animals for Ca<sup>2+</sup> imaging poses major challenges, including accelerated deterioration of <i>in situ</i> slice health and age- related changes. Additionally, optogenetic preparations necessitate usage of a red-shifted Ca<sup>2+</sup> indicator like Rhod-2 AM to avoid overlapping light issues between ChR2 and the Ca<sup>2+</sup> indicator during simultaneous optogenetic stimulation and imaging. In this article, we provide an experimental setting that uses live adult murine brain slices (2-5 months) from a knock-in model expressing Channelrhodopsin-2 (ChR2(C128S)) in cortical astrocytes, loaded with Rhod-2 AM to elicit robust Ca<sup>2+</sup> response to light stimulation. We have developed and standardized a protocol for brain extraction, sectioning, Rhod-2 AM loading, maintenance of slice health, and Ca<sup>2+</sup> imaging during light stimulation. This has been successfully applied to optogenetically control adult cortical astrocytes, which exhibit synchronous patterns of Ca<sup>2+</sup> activity upon light stimulation, drastically different from resting spontaneous activity. © 2020 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: Experimental preparation, setup, slice preparation and Rhod-2 AM staining</p><p><b>Basic Protocol 2</b>: Image acquisition and analysis</p>","PeriodicalId":40016,"journal":{"name":"Current Protocols in Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpns.110","citationCount":"8","resultStr":"{\"title\":\"Simultaneous Ca2+ Imaging and Optogenetic Stimulation of Cortical Astrocytes in Adult Murine Brain Slices\",\"authors\":\"Lakshmini Balachandar, Karla A. Montejo, Eleane Castano, Melissa Perez, Carolina Moncion, Jeremy W. Chambers, J. Luis Lujan, Jorge Riera Diaz\",\"doi\":\"10.1002/cpns.110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Astrocytes are actively involved in a neuroprotective role in the brain, which includes scavenging reactive oxygen species to minimize tissue damage. They also modulate neuroinflammation and reactive gliosis prevalent in several brain disorders like epilepsy, Alzheimer's, and Parkinson's disease. In animal models, targeted manipulation of astrocytic function via modulation of their calcium (Ca<sup>2+</sup>) oscillations by incorporating light-sensitive cation channels like Channelrhodopsin-2 (ChR2) offers a promising avenue in influencing the long-term progression of these disorders. However, using adult animals for Ca<sup>2+</sup> imaging poses major challenges, including accelerated deterioration of <i>in situ</i> slice health and age- related changes. Additionally, optogenetic preparations necessitate usage of a red-shifted Ca<sup>2+</sup> indicator like Rhod-2 AM to avoid overlapping light issues between ChR2 and the Ca<sup>2+</sup> indicator during simultaneous optogenetic stimulation and imaging. In this article, we provide an experimental setting that uses live adult murine brain slices (2-5 months) from a knock-in model expressing Channelrhodopsin-2 (ChR2(C128S)) in cortical astrocytes, loaded with Rhod-2 AM to elicit robust Ca<sup>2+</sup> response to light stimulation. We have developed and standardized a protocol for brain extraction, sectioning, Rhod-2 AM loading, maintenance of slice health, and Ca<sup>2+</sup> imaging during light stimulation. This has been successfully applied to optogenetically control adult cortical astrocytes, which exhibit synchronous patterns of Ca<sup>2+</sup> activity upon light stimulation, drastically different from resting spontaneous activity. © 2020 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: Experimental preparation, setup, slice preparation and Rhod-2 AM staining</p><p><b>Basic Protocol 2</b>: Image acquisition and analysis</p>\",\"PeriodicalId\":40016,\"journal\":{\"name\":\"Current Protocols in Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpns.110\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpns.110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpns.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 8
引用
批量引用