扩散张量- mri检测小鼠海马微结构运动诱导的神经可塑性。

Mohammad R Islam, Renhao Luo, Sophia Valaris, Erin B Haley, Hajime Takase, Yinching Iris Chen, Bradford C Dickerson, Karin Schon, Ken Arai, Christopher T Nguyen, Christiane D Wrann
{"title":"扩散张量- mri检测小鼠海马微结构运动诱导的神经可塑性。","authors":"Mohammad R Islam,&nbsp;Renhao Luo,&nbsp;Sophia Valaris,&nbsp;Erin B Haley,&nbsp;Hajime Takase,&nbsp;Yinching Iris Chen,&nbsp;Bradford C Dickerson,&nbsp;Karin Schon,&nbsp;Ken Arai,&nbsp;Christopher T Nguyen,&nbsp;Christiane D Wrann","doi":"10.3233/BPL-190090","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite considerable research on exercise-induced neuroplasticity in the brain, a major ongoing challenge in translating findings from animal studies to humans is that clinical and preclinical settings employ very different techniques.</p><p><strong>Objective: </strong>Here we aim to bridge this divide by using diffusion tensor imaging MRI (DTI), an advanced imaging technique commonly applied in human studies, in a longitudinal exercise study with mice.</p><p><strong>Methods: </strong>Wild-type mice were exercised using voluntary free-wheel running, and MRI scans were at baseline and after four weeks and nine weeks of running.</p><p><strong>Results: </strong>Both hippocampal volume and fractional anisotropy, a surrogate for microstructural directionality, significantly increased with exercise. In addition, exercise levels correlated with effect size. Histological analysis showed more PDGFR<i>α</i>+ oligodendrocyte precursor cells in the corpus callosum of running mice.</p><p><strong>Conclusions: </strong>These results provide compelling <i>in vivo</i> support for the concept that similar adaptive changes occur in the brains of mice and humans in response to exercise.</p>","PeriodicalId":72451,"journal":{"name":"Brain plasticity (Amsterdam, Netherlands)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BPL-190090","citationCount":"9","resultStr":"{\"title\":\"Diffusion tensor-MRI detects exercise-induced neuroplasticity in the hippocampal microstructure in mice.\",\"authors\":\"Mohammad R Islam,&nbsp;Renhao Luo,&nbsp;Sophia Valaris,&nbsp;Erin B Haley,&nbsp;Hajime Takase,&nbsp;Yinching Iris Chen,&nbsp;Bradford C Dickerson,&nbsp;Karin Schon,&nbsp;Ken Arai,&nbsp;Christopher T Nguyen,&nbsp;Christiane D Wrann\",\"doi\":\"10.3233/BPL-190090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Despite considerable research on exercise-induced neuroplasticity in the brain, a major ongoing challenge in translating findings from animal studies to humans is that clinical and preclinical settings employ very different techniques.</p><p><strong>Objective: </strong>Here we aim to bridge this divide by using diffusion tensor imaging MRI (DTI), an advanced imaging technique commonly applied in human studies, in a longitudinal exercise study with mice.</p><p><strong>Methods: </strong>Wild-type mice were exercised using voluntary free-wheel running, and MRI scans were at baseline and after four weeks and nine weeks of running.</p><p><strong>Results: </strong>Both hippocampal volume and fractional anisotropy, a surrogate for microstructural directionality, significantly increased with exercise. In addition, exercise levels correlated with effect size. Histological analysis showed more PDGFR<i>α</i>+ oligodendrocyte precursor cells in the corpus callosum of running mice.</p><p><strong>Conclusions: </strong>These results provide compelling <i>in vivo</i> support for the concept that similar adaptive changes occur in the brains of mice and humans in response to exercise.</p>\",\"PeriodicalId\":72451,\"journal\":{\"name\":\"Brain plasticity (Amsterdam, Netherlands)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/BPL-190090\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain plasticity (Amsterdam, Netherlands)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/BPL-190090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain plasticity (Amsterdam, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/BPL-190090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

背景:尽管对运动诱导的大脑神经可塑性进行了大量研究,但将动物研究结果转化为人类研究的一个主要挑战是临床和临床前环境采用非常不同的技术。目的:在这里,我们的目标是通过在小鼠纵向运动研究中使用弥散张量成像MRI (DTI)来弥合这一鸿沟,DTI是一种通常应用于人类研究的先进成像技术。方法:野生型小鼠采用自愿自由轮式跑步进行锻炼,并在基线、跑步4周和9周后进行MRI扫描。结果:海马体积和分数各向异性(微观结构方向性的替代指标)均随运动显著增加。此外,运动水平与效应大小相关。组织学分析显示,跑步小鼠胼胝体中PDGFRα+少突胶质细胞前体细胞增多。结论:这些结果为小鼠和人类大脑在响应运动时发生类似适应性变化的概念提供了令人信服的体内支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Diffusion tensor-MRI detects exercise-induced neuroplasticity in the hippocampal microstructure in mice.

Diffusion tensor-MRI detects exercise-induced neuroplasticity in the hippocampal microstructure in mice.

Diffusion tensor-MRI detects exercise-induced neuroplasticity in the hippocampal microstructure in mice.

Diffusion tensor-MRI detects exercise-induced neuroplasticity in the hippocampal microstructure in mice.

Background: Despite considerable research on exercise-induced neuroplasticity in the brain, a major ongoing challenge in translating findings from animal studies to humans is that clinical and preclinical settings employ very different techniques.

Objective: Here we aim to bridge this divide by using diffusion tensor imaging MRI (DTI), an advanced imaging technique commonly applied in human studies, in a longitudinal exercise study with mice.

Methods: Wild-type mice were exercised using voluntary free-wheel running, and MRI scans were at baseline and after four weeks and nine weeks of running.

Results: Both hippocampal volume and fractional anisotropy, a surrogate for microstructural directionality, significantly increased with exercise. In addition, exercise levels correlated with effect size. Histological analysis showed more PDGFRα+ oligodendrocyte precursor cells in the corpus callosum of running mice.

Conclusions: These results provide compelling in vivo support for the concept that similar adaptive changes occur in the brains of mice and humans in response to exercise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信