{"title":"外部温度传感器辅助一种新的低功耗光电容积脉搏读出系统,用于精确测量生物信号。","authors":"Rajeev Kumar Pandey, Paul C-P Chao","doi":"10.1007/s00542-020-05106-y","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an external temperature sensor assisted a new low power, time-interleave, wide dynamic range, and low DC drift photoplethysmography (PPG) signal acquisition system to obtain the accurate measurement of various bio signs in real-time. The designed chip incorporates a 2-bit control programmable transimpedance amplifier (TIA), a high order filter, a 3:8 programmable gain amplifier (PGA) and 2 × 2 organic light-emitting diode (OLED) driver. Temperature sensor is used herein to compensate the adverse effect of low-skin-temperature on the PPG signal quality. The analog front-end circuit is implemented in the integrated chip with chip area of 2008 μm × 1377 μm and fabricated via TSMC T18 process. With the standard 1.8 V, the experimental result shows that the measured current sensing range is 20 nA-100 uA. The measured dynamic range of the designed readout circuit is 80 dB. The estimated signal to noise ratio is 60 dB@1 uA, and the measured input referred noise is 60.2 pA/Hz<sup>½</sup>. The total power consumption of the designed chip is 31.32 µW (readout) + 1.62 mW (OLED driver@100% duty cycle). The non-invasive PPG sensor is applied to the wrist artery of the 40 healthy subjects for sensing the pulsation of the blood vessel. The experimental results show that for every 1 °C decrease in mean ambient temperature tends to 0.06 beats/min, 0.125 mmHg and 0.063 mmHg increase in hear rate (HR), systolic (SBP) and diastolic (DBP), respectively. Similarly, for every 1 °C increase in mean ambient temperature tends to 0.13 beats/min, 0.601 mmHg and 0.121 mmHg increase in HR, SBP and DBP, respectively. The measured accuracy and standard error for the HR estimation are 96%, and - 0.022 ± 2.589 beats/minute, respectively. The oxygen stauration (S<sub>p</sub>O<sub>2</sub>) measurement results shows that the mean absolute percentage error is less than 5%. The resultant errors for the SBP and DBP measurement are - 0.318 ± 5.19 mmHg and - 0.5 ± 1.91 mmHg, respectively.</p>","PeriodicalId":49813,"journal":{"name":"Microsystem Technologies-Micro-And Nanosystems-Information Storage and Processing Systems","volume":"27 6","pages":"2315-2343"},"PeriodicalIF":1.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00542-020-05106-y","citationCount":"4","resultStr":"{\"title\":\"External temperature sensor assisted a new low power photoplethysmography readout system for accurate measurement of the bio-signs.\",\"authors\":\"Rajeev Kumar Pandey, Paul C-P Chao\",\"doi\":\"10.1007/s00542-020-05106-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents an external temperature sensor assisted a new low power, time-interleave, wide dynamic range, and low DC drift photoplethysmography (PPG) signal acquisition system to obtain the accurate measurement of various bio signs in real-time. The designed chip incorporates a 2-bit control programmable transimpedance amplifier (TIA), a high order filter, a 3:8 programmable gain amplifier (PGA) and 2 × 2 organic light-emitting diode (OLED) driver. Temperature sensor is used herein to compensate the adverse effect of low-skin-temperature on the PPG signal quality. The analog front-end circuit is implemented in the integrated chip with chip area of 2008 μm × 1377 μm and fabricated via TSMC T18 process. With the standard 1.8 V, the experimental result shows that the measured current sensing range is 20 nA-100 uA. The measured dynamic range of the designed readout circuit is 80 dB. The estimated signal to noise ratio is 60 dB@1 uA, and the measured input referred noise is 60.2 pA/Hz<sup>½</sup>. The total power consumption of the designed chip is 31.32 µW (readout) + 1.62 mW (OLED driver@100% duty cycle). The non-invasive PPG sensor is applied to the wrist artery of the 40 healthy subjects for sensing the pulsation of the blood vessel. The experimental results show that for every 1 °C decrease in mean ambient temperature tends to 0.06 beats/min, 0.125 mmHg and 0.063 mmHg increase in hear rate (HR), systolic (SBP) and diastolic (DBP), respectively. Similarly, for every 1 °C increase in mean ambient temperature tends to 0.13 beats/min, 0.601 mmHg and 0.121 mmHg increase in HR, SBP and DBP, respectively. The measured accuracy and standard error for the HR estimation are 96%, and - 0.022 ± 2.589 beats/minute, respectively. The oxygen stauration (S<sub>p</sub>O<sub>2</sub>) measurement results shows that the mean absolute percentage error is less than 5%. The resultant errors for the SBP and DBP measurement are - 0.318 ± 5.19 mmHg and - 0.5 ± 1.91 mmHg, respectively.</p>\",\"PeriodicalId\":49813,\"journal\":{\"name\":\"Microsystem Technologies-Micro-And Nanosystems-Information Storage and Processing Systems\",\"volume\":\"27 6\",\"pages\":\"2315-2343\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00542-020-05106-y\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystem Technologies-Micro-And Nanosystems-Information Storage and Processing Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00542-020-05106-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystem Technologies-Micro-And Nanosystems-Information Storage and Processing Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00542-020-05106-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
External temperature sensor assisted a new low power photoplethysmography readout system for accurate measurement of the bio-signs.
This study presents an external temperature sensor assisted a new low power, time-interleave, wide dynamic range, and low DC drift photoplethysmography (PPG) signal acquisition system to obtain the accurate measurement of various bio signs in real-time. The designed chip incorporates a 2-bit control programmable transimpedance amplifier (TIA), a high order filter, a 3:8 programmable gain amplifier (PGA) and 2 × 2 organic light-emitting diode (OLED) driver. Temperature sensor is used herein to compensate the adverse effect of low-skin-temperature on the PPG signal quality. The analog front-end circuit is implemented in the integrated chip with chip area of 2008 μm × 1377 μm and fabricated via TSMC T18 process. With the standard 1.8 V, the experimental result shows that the measured current sensing range is 20 nA-100 uA. The measured dynamic range of the designed readout circuit is 80 dB. The estimated signal to noise ratio is 60 dB@1 uA, and the measured input referred noise is 60.2 pA/Hz½. The total power consumption of the designed chip is 31.32 µW (readout) + 1.62 mW (OLED driver@100% duty cycle). The non-invasive PPG sensor is applied to the wrist artery of the 40 healthy subjects for sensing the pulsation of the blood vessel. The experimental results show that for every 1 °C decrease in mean ambient temperature tends to 0.06 beats/min, 0.125 mmHg and 0.063 mmHg increase in hear rate (HR), systolic (SBP) and diastolic (DBP), respectively. Similarly, for every 1 °C increase in mean ambient temperature tends to 0.13 beats/min, 0.601 mmHg and 0.121 mmHg increase in HR, SBP and DBP, respectively. The measured accuracy and standard error for the HR estimation are 96%, and - 0.022 ± 2.589 beats/minute, respectively. The oxygen stauration (SpO2) measurement results shows that the mean absolute percentage error is less than 5%. The resultant errors for the SBP and DBP measurement are - 0.318 ± 5.19 mmHg and - 0.5 ± 1.91 mmHg, respectively.
期刊介绍:
"Microsystem Technologies - Micro- and Nanosystems. Information Storage and Processing Systems" is intended to provide rapid publication of important and timely results on electromechanical, materials science, design, and manufacturing issues of these systems and their components.
The MEMS/NEMS (Micro/NanoElectroMechanical Systems) area includes sensor, actuators and other micro/nanosystems, and micromechatronic systems integration.
Information storage systems include magnetic recording, optical recording, and other recording devices, e.g., rigid disk, flexible disk, tape and card drives. Processing systems include copiers, printers, scanners and digital cameras.
All contributions are of international archival quality. These are refereed by MST editors and their reviewers by rigorous journal standards. The journal covers a wide range of interdisciplinary technical areas. It brings together and cross-links the knowledge, experience, and capabilities of academic and industrial specialists in many fields. Finally, it contributes to the economically and ecologically sound production of reliable, high-performance MEMS and information storage & processing systems.