多个短周期行星系统的动力学不稳定性可能是由长期混沌驱动的:开普勒-102的一个案例研究。

IF 5.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Astronomical Journal Pub Date : 2020-09-01 Epub Date: 2020-08-04 DOI:10.3847/1538-3881/aba0b0
Kathryn Volk, Renu Malhotra
{"title":"多个短周期行星系统的动力学不稳定性可能是由长期混沌驱动的:开普勒-102的一个案例研究。","authors":"Kathryn Volk,&nbsp;Renu Malhotra","doi":"10.3847/1538-3881/aba0b0","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the dynamical stability of high-multiplicity <i>Kepler</i> and <i>K2</i> planetary systems. Our numerical simulations find instabilities in ~ 20% of the cases on a wide range of timescales (up to 5×10<sup>9</sup> orbits) and over an unexpectedly wide range of initial dynamical spacings. To identify the triggers of long-term instability in multi-planet systems, we investigated in detail the five-planet Kepler-102 system. Despite having several near-resonant period ratios, we find that mean motion resonances are unlikely to directly cause instability for plausible planet masses in this system. Instead, we find strong evidence that slow inward transfer of angular momentum deficit (AMD) via secular chaos excites the eccentricity of the innermost planet, Kepler-102 b, eventually leading to planet-planet collisions in ~ 80% of Kepler-102 simulations. Kepler-102 b likely needs a mass ≳ 0.1<i>M</i> <sub>⊕</sub>, hence a bulk density exceeding about half Earth's, in order to avoid dynamical instability. To investigate the role of secular chaos in our wider set of simulations, we characterize each planetary system's AMD evolution with a \"spectral fraction\" calculated from the power spectrum of short integrations (~ 5 × 10<sup>6</sup> orbits). We find that small spectral fractions (≲ 0.01) are strongly associated with dynamical stability on long timescales (5 × 10<sup>9</sup> orbits) and that the median time to instability decreases with increasing spectral fraction. Our results support the hypothesis that secular chaos is the driver of instabilities in many non-resonant multi-planet systems, and also demonstrate that the spectral analysis method is an efficient numerical tool to diagnose long term (in)stability of multi-planet systems from short simulations.</p>","PeriodicalId":55582,"journal":{"name":"Astronomical Journal","volume":"160 3","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709759/pdf/nihms-1645632.pdf","citationCount":"11","resultStr":"{\"title\":\"Dynamical instabilities in systems of multiple short-period planets are likely driven by secular chaos: a case study of Kepler-102.\",\"authors\":\"Kathryn Volk,&nbsp;Renu Malhotra\",\"doi\":\"10.3847/1538-3881/aba0b0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated the dynamical stability of high-multiplicity <i>Kepler</i> and <i>K2</i> planetary systems. Our numerical simulations find instabilities in ~ 20% of the cases on a wide range of timescales (up to 5×10<sup>9</sup> orbits) and over an unexpectedly wide range of initial dynamical spacings. To identify the triggers of long-term instability in multi-planet systems, we investigated in detail the five-planet Kepler-102 system. Despite having several near-resonant period ratios, we find that mean motion resonances are unlikely to directly cause instability for plausible planet masses in this system. Instead, we find strong evidence that slow inward transfer of angular momentum deficit (AMD) via secular chaos excites the eccentricity of the innermost planet, Kepler-102 b, eventually leading to planet-planet collisions in ~ 80% of Kepler-102 simulations. Kepler-102 b likely needs a mass ≳ 0.1<i>M</i> <sub>⊕</sub>, hence a bulk density exceeding about half Earth's, in order to avoid dynamical instability. To investigate the role of secular chaos in our wider set of simulations, we characterize each planetary system's AMD evolution with a \\\"spectral fraction\\\" calculated from the power spectrum of short integrations (~ 5 × 10<sup>6</sup> orbits). We find that small spectral fractions (≲ 0.01) are strongly associated with dynamical stability on long timescales (5 × 10<sup>9</sup> orbits) and that the median time to instability decreases with increasing spectral fraction. Our results support the hypothesis that secular chaos is the driver of instabilities in many non-resonant multi-planet systems, and also demonstrate that the spectral analysis method is an efficient numerical tool to diagnose long term (in)stability of multi-planet systems from short simulations.</p>\",\"PeriodicalId\":55582,\"journal\":{\"name\":\"Astronomical Journal\",\"volume\":\"160 3\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709759/pdf/nihms-1645632.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomical Journal\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-3881/aba0b0\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomical Journal","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3847/1538-3881/aba0b0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 11

摘要

我们研究了高倍数开普勒和K2行星系统的动力学稳定性。我们的数值模拟发现,在大范围的时间尺度(高达5×109轨道)和出乎意料的大范围初始动力间隔中,约20%的情况不稳定。为了确定多行星系统长期不稳定的触发因素,我们详细研究了五行星开普勒-102系统。尽管有几个近共振周期比,我们发现平均运动共振不太可能直接导致该系统中似是而非的行星质量不稳定。相反,我们发现强有力的证据表明,角动量赤字(AMD)通过长期混沌缓慢向内转移会激发最内层行星开普勒-102 b的偏心率,最终导致约80%的开普勒-102模拟中的行星-行星碰撞。开普勒-102 b可能需要质量大于0.1M⊕,因此体积密度超过地球的一半,以避免动力学不稳定。为了研究长期混沌在我们更广泛的模拟中的作用,我们用从短积分(~ 5 × 106轨道)的功率谱计算的“光谱分数”来表征每个行星系统的AMD演化。我们发现,在长时间尺度(5 × 109轨道)上,小谱分数(≥0.01)与动力学稳定性密切相关,且到不稳定性的中位时间随谱分数的增加而减小。我们的研究结果支持了长期混沌是许多非共振多行星系统不稳定性驱动因素的假设,也证明了光谱分析方法是一种有效的数值工具,可以从短期模拟中诊断多行星系统的长期(in)稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical instabilities in systems of multiple short-period planets are likely driven by secular chaos: a case study of Kepler-102.

We investigated the dynamical stability of high-multiplicity Kepler and K2 planetary systems. Our numerical simulations find instabilities in ~ 20% of the cases on a wide range of timescales (up to 5×109 orbits) and over an unexpectedly wide range of initial dynamical spacings. To identify the triggers of long-term instability in multi-planet systems, we investigated in detail the five-planet Kepler-102 system. Despite having several near-resonant period ratios, we find that mean motion resonances are unlikely to directly cause instability for plausible planet masses in this system. Instead, we find strong evidence that slow inward transfer of angular momentum deficit (AMD) via secular chaos excites the eccentricity of the innermost planet, Kepler-102 b, eventually leading to planet-planet collisions in ~ 80% of Kepler-102 simulations. Kepler-102 b likely needs a mass ≳ 0.1M , hence a bulk density exceeding about half Earth's, in order to avoid dynamical instability. To investigate the role of secular chaos in our wider set of simulations, we characterize each planetary system's AMD evolution with a "spectral fraction" calculated from the power spectrum of short integrations (~ 5 × 106 orbits). We find that small spectral fractions (≲ 0.01) are strongly associated with dynamical stability on long timescales (5 × 109 orbits) and that the median time to instability decreases with increasing spectral fraction. Our results support the hypothesis that secular chaos is the driver of instabilities in many non-resonant multi-planet systems, and also demonstrate that the spectral analysis method is an efficient numerical tool to diagnose long term (in)stability of multi-planet systems from short simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomical Journal
Astronomical Journal 地学天文-天文与天体物理
CiteScore
8.40
自引率
24.50%
发文量
501
审稿时长
2-4 weeks
期刊介绍: The Astronomical Journal publishes original astronomical research, with an emphasis on significant scientific results derived from observations. Publications in AJ include descriptions of data capture, surveys, analysis techniques, astronomical interpretation, instrumentation, and software and computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信