计算和在贝塔,多,和高斯超几何函数。

IF 1.8 2区 数学 Q1 MATHEMATICS
Feng Qi, Chuan-Jun Huang
{"title":"计算和在贝塔,多,和高斯超几何函数。","authors":"Feng Qi,&nbsp;Chuan-Jun Huang","doi":"10.1007/s13398-020-00927-y","DOIUrl":null,"url":null,"abstract":"<p><p>In the paper, by virtue of the binomial inversion formula, a general formula of higher order derivatives for a ratio of two differentiable function, and other techniques, the authors compute several sums in terms of the beta function and its partial derivatives, polygamma functions, the Gauss hypergeometric function, and a determinant. These results generalize known ones in combinatorics.</p>","PeriodicalId":54471,"journal":{"name":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","volume":"114 4","pages":"191"},"PeriodicalIF":1.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13398-020-00927-y","citationCount":"6","resultStr":"{\"title\":\"Computing sums in terms of beta, polygamma, and Gauss hypergeometric functions.\",\"authors\":\"Feng Qi,&nbsp;Chuan-Jun Huang\",\"doi\":\"10.1007/s13398-020-00927-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the paper, by virtue of the binomial inversion formula, a general formula of higher order derivatives for a ratio of two differentiable function, and other techniques, the authors compute several sums in terms of the beta function and its partial derivatives, polygamma functions, the Gauss hypergeometric function, and a determinant. These results generalize known ones in combinatorics.</p>\",\"PeriodicalId\":54471,\"journal\":{\"name\":\"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas\",\"volume\":\"114 4\",\"pages\":\"191\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13398-020-00927-y\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13398-020-00927-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/8/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13398-020-00927-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

本文利用二项式反演公式、两个可微函数之比的高阶导数的一般公式等技术,计算了函数及其偏导数、多函数、高斯超几何函数和行列式的若干和。这些结果推广了组合学中已知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing sums in terms of beta, polygamma, and Gauss hypergeometric functions.

In the paper, by virtue of the binomial inversion formula, a general formula of higher order derivatives for a ratio of two differentiable function, and other techniques, the authors compute several sums in terms of the beta function and its partial derivatives, polygamma functions, the Gauss hypergeometric function, and a determinant. These results generalize known ones in combinatorics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
17.20%
发文量
151
审稿时长
>12 weeks
期刊介绍: The journal publishes, in English language only, high-quality Research Articles covering Algebra; Applied Mathematics; Computational Sciences; Geometry and Topology; Mathematical Analysis; Statistics and Operations Research. Also featured are Survey Articles in every mathematical field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信