{"title":"利用小鼠种群的自然变异来了解宿主-肠道微生物组的相互作用","authors":"Elin Org , Aldons J. Lusis","doi":"10.1016/j.ddmod.2019.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>One approach to understanding gut microbiome–host interactions, described in this review, is to examine how natural variation in a model organism, where environmental factors can be controlled, affects the microbiome<span> and, in turn, how the microbiome is associated with physiological or clinical traits. A variation of this approach, termed “systems genetics” is to characterize both the microbiome and the host using various high throughput technologies, such as metabolomics or gene expression of the microbiome and the host. By relating variation in the microbiome and host functions to such “molecular phenotypes”, hypotheses can be generated and then experimentally tested. To model human gut microbiome–host interactions in this way, the mouse is particularly useful given the extensive body of genetic resources and experimental tools that are available.</span></p></div>","PeriodicalId":39774,"journal":{"name":"Drug Discovery Today: Disease Models","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddmod.2019.08.003","citationCount":"4","resultStr":"{\"title\":\"Using the natural variation of mouse populations to understand host-gut microbiome interactions\",\"authors\":\"Elin Org , Aldons J. Lusis\",\"doi\":\"10.1016/j.ddmod.2019.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One approach to understanding gut microbiome–host interactions, described in this review, is to examine how natural variation in a model organism, where environmental factors can be controlled, affects the microbiome<span> and, in turn, how the microbiome is associated with physiological or clinical traits. A variation of this approach, termed “systems genetics” is to characterize both the microbiome and the host using various high throughput technologies, such as metabolomics or gene expression of the microbiome and the host. By relating variation in the microbiome and host functions to such “molecular phenotypes”, hypotheses can be generated and then experimentally tested. To model human gut microbiome–host interactions in this way, the mouse is particularly useful given the extensive body of genetic resources and experimental tools that are available.</span></p></div>\",\"PeriodicalId\":39774,\"journal\":{\"name\":\"Drug Discovery Today: Disease Models\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddmod.2019.08.003\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today: Disease Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1740675718300264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Disease Models","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740675718300264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Using the natural variation of mouse populations to understand host-gut microbiome interactions
One approach to understanding gut microbiome–host interactions, described in this review, is to examine how natural variation in a model organism, where environmental factors can be controlled, affects the microbiome and, in turn, how the microbiome is associated with physiological or clinical traits. A variation of this approach, termed “systems genetics” is to characterize both the microbiome and the host using various high throughput technologies, such as metabolomics or gene expression of the microbiome and the host. By relating variation in the microbiome and host functions to such “molecular phenotypes”, hypotheses can be generated and then experimentally tested. To model human gut microbiome–host interactions in this way, the mouse is particularly useful given the extensive body of genetic resources and experimental tools that are available.
期刊介绍:
Drug Discovery Today: Disease Models discusses the non-human experimental models through which inference is drawn regarding the molecular aetiology and pathogenesis of human disease. It provides critical analysis and evaluation of which models can genuinely inform the research community about the direct process of human disease, those which may have value in basic toxicology, and those which are simply designed for effective expression and raw characterisation.