模拟人体运动皮层对经颅磁刺激的多肌肉反应的实验和计算框架。

Mathew Yarossi, Fernando Quivira, Moritz Dannhauer, Marc A Sommer, Dana H Brooks, Deniz Erdoğmuş, Eugene Tunik
{"title":"模拟人体运动皮层对经颅磁刺激的多肌肉反应的实验和计算框架。","authors":"Mathew Yarossi, Fernando Quivira, Moritz Dannhauer, Marc A Sommer, Dana H Brooks, Deniz Erdoğmuş, Eugene Tunik","doi":"10.1109/ner.2019.8717159","DOIUrl":null,"url":null,"abstract":"<p><p>Current knowledge of coordinated motor control of multiple muscles is derived primarily from invasive stimulation-recording techniques in animal models. Similar studies are not generally feasible in humans, so a modeling framework is needed to facilitate knowledge transfer from animal studies. We describe such a framework that uses a deep neural network model to map finite element simulation of transcranial magnetic stimulation induced electric fields (E-fields) in motor cortex to recordings of multi-muscle activation. Critically, we show that model generalization is improved when we incorporate empirically derived physiological models for E-field to neuron firing rate and low-dimensional control via muscle synergies.</p>","PeriodicalId":73414,"journal":{"name":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","volume":" ","pages":"1122-1125"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430757/pdf/nihms-1613867.pdf","citationCount":"0","resultStr":"{\"title\":\"An experimental and computational framework for modeling multi-muscle responses to transcranial magnetic stimulation of the human motor cortex.\",\"authors\":\"Mathew Yarossi, Fernando Quivira, Moritz Dannhauer, Marc A Sommer, Dana H Brooks, Deniz Erdoğmuş, Eugene Tunik\",\"doi\":\"10.1109/ner.2019.8717159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current knowledge of coordinated motor control of multiple muscles is derived primarily from invasive stimulation-recording techniques in animal models. Similar studies are not generally feasible in humans, so a modeling framework is needed to facilitate knowledge transfer from animal studies. We describe such a framework that uses a deep neural network model to map finite element simulation of transcranial magnetic stimulation induced electric fields (E-fields) in motor cortex to recordings of multi-muscle activation. Critically, we show that model generalization is improved when we incorporate empirically derived physiological models for E-field to neuron firing rate and low-dimensional control via muscle synergies.</p>\",\"PeriodicalId\":73414,\"journal\":{\"name\":\"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering\",\"volume\":\" \",\"pages\":\"1122-1125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430757/pdf/nihms-1613867.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ner.2019.8717159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ner.2019.8717159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前有关多块肌肉协调运动控制的知识主要来自动物模型的侵入性刺激记录技术。人类一般无法进行类似的研究,因此需要一个建模框架来促进动物研究知识的转移。我们描述了这样一个框架,它使用深度神经网络模型将运动皮层经颅磁刺激诱导电场(E-场)的有限元模拟映射到多肌肉激活记录。重要的是,我们表明,当我们将根据经验得出的电场到神经元发射率的生理模型和通过肌肉协同作用的低维控制模型结合在一起时,模型的泛化能力得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An experimental and computational framework for modeling multi-muscle responses to transcranial magnetic stimulation of the human motor cortex.

An experimental and computational framework for modeling multi-muscle responses to transcranial magnetic stimulation of the human motor cortex.

An experimental and computational framework for modeling multi-muscle responses to transcranial magnetic stimulation of the human motor cortex.

An experimental and computational framework for modeling multi-muscle responses to transcranial magnetic stimulation of the human motor cortex.

Current knowledge of coordinated motor control of multiple muscles is derived primarily from invasive stimulation-recording techniques in animal models. Similar studies are not generally feasible in humans, so a modeling framework is needed to facilitate knowledge transfer from animal studies. We describe such a framework that uses a deep neural network model to map finite element simulation of transcranial magnetic stimulation induced electric fields (E-fields) in motor cortex to recordings of multi-muscle activation. Critically, we show that model generalization is improved when we incorporate empirically derived physiological models for E-field to neuron firing rate and low-dimensional control via muscle synergies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信