不同革兰氏阴性菌中携带抗生素抗性基因的L和M质粒谱系的进化和传播

IF 1.8 4区 生物学 Q3 GENETICS & HEREDITY
Grace A. Blackwell , Emma L. Doughty , Robert A. Moran
{"title":"不同革兰氏阴性菌中携带抗生素抗性基因的L和M质粒谱系的进化和传播","authors":"Grace A. Blackwell ,&nbsp;Emma L. Doughty ,&nbsp;Robert A. Moran","doi":"10.1016/j.plasmid.2020.102528","DOIUrl":null,"url":null,"abstract":"<div><p><span>Conjugative, broad host-range plasmids of the L/M complex have been associated with antibiotic resistance<span> since the 1970s. They are found in Gram-negative bacterial genera that cause human infections and persist in hospital environments. It is crucial that these plasmids are typed accurately so that their clinical and global dissemination can be traced in epidemiological studies. The L/M complex has previously been divided into L, M1 and M2 subtypes. However, those types do not encompass all diversity seen in the group. Here, we have examined 148 complete L/M plasmid sequences in order to understand the diversity of the complex and trace the evolution of distinct lineages. The backbone sequence of each plasmid was determined by removing translocatable genetic elements and reversing their effects </span></span><em>in silico</em><span>. The sequence identities of replication regions and complete backbones were then considered for typing. This supported the distinction of L and M plasmids and revealed that there are five L and eight M types, where each type is comprised of further sub-lineages that are distinguished by variation in their backbone and translocatable element content. Regions containing antibiotic resistance genes in L and M sub-lineages have often formed by initial rare insertion events, followed by insertion of other translocatable elements within the inceptive element. As such, islands evolve </span><em>in situ</em> to contain genes conferring resistance to multiple antibiotics. In some cases, different plasmid sub-lineages have acquired the same or related resistance genes independently. This highlights the importance of these plasmids in acting as vehicles for the dissemination of emerging resistance genes. Materials are provided here for typing plasmids of the L/M complex from complete sequences or draft genomes. This should enable rapid identification of novel types and facilitate tracking the evolution of existing lineages.</p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2020.102528","citationCount":"7","resultStr":"{\"title\":\"Evolution and dissemination of L and M plasmid lineages carrying antibiotic resistance genes in diverse Gram-negative bacteria\",\"authors\":\"Grace A. Blackwell ,&nbsp;Emma L. Doughty ,&nbsp;Robert A. Moran\",\"doi\":\"10.1016/j.plasmid.2020.102528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Conjugative, broad host-range plasmids of the L/M complex have been associated with antibiotic resistance<span> since the 1970s. They are found in Gram-negative bacterial genera that cause human infections and persist in hospital environments. It is crucial that these plasmids are typed accurately so that their clinical and global dissemination can be traced in epidemiological studies. The L/M complex has previously been divided into L, M1 and M2 subtypes. However, those types do not encompass all diversity seen in the group. Here, we have examined 148 complete L/M plasmid sequences in order to understand the diversity of the complex and trace the evolution of distinct lineages. The backbone sequence of each plasmid was determined by removing translocatable genetic elements and reversing their effects </span></span><em>in silico</em><span>. The sequence identities of replication regions and complete backbones were then considered for typing. This supported the distinction of L and M plasmids and revealed that there are five L and eight M types, where each type is comprised of further sub-lineages that are distinguished by variation in their backbone and translocatable element content. Regions containing antibiotic resistance genes in L and M sub-lineages have often formed by initial rare insertion events, followed by insertion of other translocatable elements within the inceptive element. As such, islands evolve </span><em>in situ</em> to contain genes conferring resistance to multiple antibiotics. In some cases, different plasmid sub-lineages have acquired the same or related resistance genes independently. This highlights the importance of these plasmids in acting as vehicles for the dissemination of emerging resistance genes. Materials are provided here for typing plasmids of the L/M complex from complete sequences or draft genomes. This should enable rapid identification of novel types and facilitate tracking the evolution of existing lineages.</p></div>\",\"PeriodicalId\":49689,\"journal\":{\"name\":\"Plasmid\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.plasmid.2020.102528\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasmid\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147619X20300408\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmid","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147619X20300408","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 7

摘要

自20世纪70年代以来,L/M复合体的共轭广泛宿主质粒与抗生素耐药性有关。它们存在于引起人类感染并在医院环境中持续存在的革兰氏阴性细菌属中。至关重要的是,这些质粒必须准确分型,以便在流行病学研究中追踪它们的临床和全球传播。L/M复合体以前被分为L、M1和M2亚型。然而,这些类型并不能涵盖群体中所有的多样性。在这里,我们检查了148个完整的L/M质粒序列,以了解该复合体的多样性并追踪不同谱系的进化。每个质粒的主干序列是通过去除可易位的遗传元件并在硅中逆转它们的作用来确定的。然后考虑复制区域和完整主干的序列身份进行分型。这支持了L和M质粒的区分,并揭示了有5个L型和8个M型,其中每个型都由进一步的子谱系组成,这些子谱系通过其主干和可易位元素含量的变化来区分。L和M亚系中含有抗生素耐药基因的区域通常是由最初罕见的插入事件形成的,随后在初始元件中插入其他可易位元件。因此,岛屿在原地进化,包含对多种抗生素具有抗性的基因。在某些情况下,不同的质粒亚系独立获得相同或相关的抗性基因。这突出了这些质粒作为新出现的抗性基因传播载体的重要性。这里提供了从完整序列或草图基因组中分型L/M复合物质粒的材料。这将使新的类型的快速识别和促进跟踪现有谱系的演变成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution and dissemination of L and M plasmid lineages carrying antibiotic resistance genes in diverse Gram-negative bacteria

Conjugative, broad host-range plasmids of the L/M complex have been associated with antibiotic resistance since the 1970s. They are found in Gram-negative bacterial genera that cause human infections and persist in hospital environments. It is crucial that these plasmids are typed accurately so that their clinical and global dissemination can be traced in epidemiological studies. The L/M complex has previously been divided into L, M1 and M2 subtypes. However, those types do not encompass all diversity seen in the group. Here, we have examined 148 complete L/M plasmid sequences in order to understand the diversity of the complex and trace the evolution of distinct lineages. The backbone sequence of each plasmid was determined by removing translocatable genetic elements and reversing their effects in silico. The sequence identities of replication regions and complete backbones were then considered for typing. This supported the distinction of L and M plasmids and revealed that there are five L and eight M types, where each type is comprised of further sub-lineages that are distinguished by variation in their backbone and translocatable element content. Regions containing antibiotic resistance genes in L and M sub-lineages have often formed by initial rare insertion events, followed by insertion of other translocatable elements within the inceptive element. As such, islands evolve in situ to contain genes conferring resistance to multiple antibiotics. In some cases, different plasmid sub-lineages have acquired the same or related resistance genes independently. This highlights the importance of these plasmids in acting as vehicles for the dissemination of emerging resistance genes. Materials are provided here for typing plasmids of the L/M complex from complete sequences or draft genomes. This should enable rapid identification of novel types and facilitate tracking the evolution of existing lineages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasmid
Plasmid 生物-遗传学
CiteScore
4.70
自引率
3.80%
发文量
21
审稿时长
53 days
期刊介绍: Plasmid publishes original research on genetic elements in all kingdoms of life with emphasis on maintenance, transmission and evolution of extrachromosomal elements. Objects of interest include plasmids, bacteriophages, mobile genetic elements, organelle DNA, and genomic and pathogenicity islands.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信