放射组学和人工智能用于PET成像分析。

IF 0.6 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Andrea d'Amico, Damian Borys, Izabela Gorczewska
{"title":"放射组学和人工智能用于PET成像分析。","authors":"Andrea d'Amico,&nbsp;Damian Borys,&nbsp;Izabela Gorczewska","doi":"10.5603/NMR.2020.0005","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, processing of the imaging signal derived from CT, MR or positron emission has proven to be able to predict outcome parameters in cancer patients. The processing techniques of the signal constitute the discipline of radiomics. The quantitative analysis of medical images outperform the information that can be obtained through traditional visual analysis. The recognition of neoplasm molecular and genetic characteristics in a non-invasive way, based on routine radiological examinations, potentially allow complete tumor profiling and subsequent treatment customization at practically zero costs. This process is further boosted with the availability of increased computing power and development of artificial intelligence approaches.</p>","PeriodicalId":44718,"journal":{"name":"NUCLEAR MEDICINE REVIEW","volume":"23 1","pages":"36-39"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Radiomics and artificial Intelligence for PET imaging analysis.\",\"authors\":\"Andrea d'Amico,&nbsp;Damian Borys,&nbsp;Izabela Gorczewska\",\"doi\":\"10.5603/NMR.2020.0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, processing of the imaging signal derived from CT, MR or positron emission has proven to be able to predict outcome parameters in cancer patients. The processing techniques of the signal constitute the discipline of radiomics. The quantitative analysis of medical images outperform the information that can be obtained through traditional visual analysis. The recognition of neoplasm molecular and genetic characteristics in a non-invasive way, based on routine radiological examinations, potentially allow complete tumor profiling and subsequent treatment customization at practically zero costs. This process is further boosted with the availability of increased computing power and development of artificial intelligence approaches.</p>\",\"PeriodicalId\":44718,\"journal\":{\"name\":\"NUCLEAR MEDICINE REVIEW\",\"volume\":\"23 1\",\"pages\":\"36-39\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NUCLEAR MEDICINE REVIEW\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5603/NMR.2020.0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUCLEAR MEDICINE REVIEW","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5603/NMR.2020.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 3

摘要

近年来,对来自CT、MR或正电子发射的成像信号进行处理已被证明能够预测癌症患者的预后参数。信号的处理技术构成了放射组学的学科。医学图像的定量分析优于传统的视觉分析所能获得的信息。在常规放射检查的基础上,以非侵入性的方式识别肿瘤分子和遗传特征,有可能以几乎零成本的方式完成肿瘤分析和随后的治疗定制。随着计算能力的提高和人工智能方法的发展,这一过程进一步得到了推动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiomics and artificial Intelligence for PET imaging analysis.

In recent years, processing of the imaging signal derived from CT, MR or positron emission has proven to be able to predict outcome parameters in cancer patients. The processing techniques of the signal constitute the discipline of radiomics. The quantitative analysis of medical images outperform the information that can be obtained through traditional visual analysis. The recognition of neoplasm molecular and genetic characteristics in a non-invasive way, based on routine radiological examinations, potentially allow complete tumor profiling and subsequent treatment customization at practically zero costs. This process is further boosted with the availability of increased computing power and development of artificial intelligence approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NUCLEAR MEDICINE REVIEW
NUCLEAR MEDICINE REVIEW RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
1.40
自引率
0.00%
发文量
53
审稿时长
24 weeks
期刊介绍: Written in English, NMR is a biannual international periodical of scientific and educational profile. It is a journal of Bulgarian, Czech, Hungarian, Macedonian, Polish, Romanian, Russian, Slovak, Ukrainian and Yugoslav Societies of Nuclear Medicine. The periodical focuses on all nuclear medicine topics (diagnostics as well as therapy), and presents original experimental scientific papers, reviews, case studies, letters also news about symposia and congresses. NMR is indexed at Index Copernicus (7.41), Scopus, EMBASE, Index Medicus/Medline, Ministry of Education 2007 (4 pts.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信