{"title":"概周期时滞尼克尔森苍蝇系统的全局收敛动力学。","authors":"Chuangxia Huang, Renli Su, Yuhui Hu","doi":"10.1080/17513758.2020.1800841","DOIUrl":null,"url":null,"abstract":"<p><p>We take into account nonlinear density-dependent mortality term and patch structure to deal with the global convergence dynamics of almost periodic delay Nicholson's blowflies system in this paper. To begin with, we prove that the solutions of the addressed system exist globally and are bounded above. What's more, by the methods of Lyapunov function and analytical techniques, we establish new criteria to check the existence and global attractivity of the positive asymptotically almost periodic solution. In the end, we arrange an example to illustrate the effectiveness and feasibility of the obtained results.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"14 1","pages":"633-655"},"PeriodicalIF":1.8000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1800841","citationCount":"4","resultStr":"{\"title\":\"Global convergence dynamics of almost periodic delay Nicholson's blowflies systems.\",\"authors\":\"Chuangxia Huang, Renli Su, Yuhui Hu\",\"doi\":\"10.1080/17513758.2020.1800841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We take into account nonlinear density-dependent mortality term and patch structure to deal with the global convergence dynamics of almost periodic delay Nicholson's blowflies system in this paper. To begin with, we prove that the solutions of the addressed system exist globally and are bounded above. What's more, by the methods of Lyapunov function and analytical techniques, we establish new criteria to check the existence and global attractivity of the positive asymptotically almost periodic solution. In the end, we arrange an example to illustrate the effectiveness and feasibility of the obtained results.</p>\",\"PeriodicalId\":48809,\"journal\":{\"name\":\"Journal of Biological Dynamics\",\"volume\":\"14 1\",\"pages\":\"633-655\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17513758.2020.1800841\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2020.1800841\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2020.1800841","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Global convergence dynamics of almost periodic delay Nicholson's blowflies systems.
We take into account nonlinear density-dependent mortality term and patch structure to deal with the global convergence dynamics of almost periodic delay Nicholson's blowflies system in this paper. To begin with, we prove that the solutions of the addressed system exist globally and are bounded above. What's more, by the methods of Lyapunov function and analytical techniques, we establish new criteria to check the existence and global attractivity of the positive asymptotically almost periodic solution. In the end, we arrange an example to illustrate the effectiveness and feasibility of the obtained results.
期刊介绍:
Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.