Daniel A McPartlin, Caroline Murphy, Jenny Fitzgerald, Hui Ma, Fiona Regan, Richard J O'Kennedy
{"title":"利用硅对接和体外诱变了解微囊藻毒素- lr抗体结合相互作用。","authors":"Daniel A McPartlin, Caroline Murphy, Jenny Fitzgerald, Hui Ma, Fiona Regan, Richard J O'Kennedy","doi":"10.1093/protein/gzaa016","DOIUrl":null,"url":null,"abstract":"<p><p>Microcystins (MCs) are a group of highly potent cyanotoxins that are becoming more widely distributed due to increased global temperatures and climate change. Microcystin-leucine-arginine (MC-LR) is the most potent and most common variant, with a guideline limit of 1 μg/l in drinking water. We previously developed a novel avian single-chain fragment variable (scFv), designated 2G1, for use in an optical-planar waveguide detection system for microcystin determination. This current work investigates interactions between 2G1 and MC-LR at the molecular level through modelling with an avian antibody template and molecular docking by AutoDock Vina to identify key amino acid (AA) residues involved. These potential AA interactions were investigated in vitro by targeted mutagenesis, specifically, by alanine scanning mutations. Glutamic acid (E) was found to play a critical role in the 2G1-MC-LR binding interaction, with the heavy chain glutamic acid (E) 102 (H-E102) forming direct bonds with the arginine (R) residue of MC-LR. In addition, alanine mutation of light chain residue aspartic acid 57 (L-D57) led to an improvement in antigen-binding observed using enzyme-linked immunosorbent assay (ELISA), and was confirmed by surface plasmon resonance (SPR). This work will contribute to improving the binding of recombinant anti-MC-LR to its antigen and aid in the development of a higher sensitivity harmful algal toxin diagnostic.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"32 12","pages":"533-542"},"PeriodicalIF":2.6000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzaa016","citationCount":"0","resultStr":"{\"title\":\"Understanding microcystin-LR antibody binding interactions using in silico docking and in vitro mutagenesis.\",\"authors\":\"Daniel A McPartlin, Caroline Murphy, Jenny Fitzgerald, Hui Ma, Fiona Regan, Richard J O'Kennedy\",\"doi\":\"10.1093/protein/gzaa016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microcystins (MCs) are a group of highly potent cyanotoxins that are becoming more widely distributed due to increased global temperatures and climate change. Microcystin-leucine-arginine (MC-LR) is the most potent and most common variant, with a guideline limit of 1 μg/l in drinking water. We previously developed a novel avian single-chain fragment variable (scFv), designated 2G1, for use in an optical-planar waveguide detection system for microcystin determination. This current work investigates interactions between 2G1 and MC-LR at the molecular level through modelling with an avian antibody template and molecular docking by AutoDock Vina to identify key amino acid (AA) residues involved. These potential AA interactions were investigated in vitro by targeted mutagenesis, specifically, by alanine scanning mutations. Glutamic acid (E) was found to play a critical role in the 2G1-MC-LR binding interaction, with the heavy chain glutamic acid (E) 102 (H-E102) forming direct bonds with the arginine (R) residue of MC-LR. In addition, alanine mutation of light chain residue aspartic acid 57 (L-D57) led to an improvement in antigen-binding observed using enzyme-linked immunosorbent assay (ELISA), and was confirmed by surface plasmon resonance (SPR). This work will contribute to improving the binding of recombinant anti-MC-LR to its antigen and aid in the development of a higher sensitivity harmful algal toxin diagnostic.</p>\",\"PeriodicalId\":54543,\"journal\":{\"name\":\"Protein Engineering Design & Selection\",\"volume\":\"32 12\",\"pages\":\"533-542\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/protein/gzaa016\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Engineering Design & Selection\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzaa016\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzaa016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Understanding microcystin-LR antibody binding interactions using in silico docking and in vitro mutagenesis.
Microcystins (MCs) are a group of highly potent cyanotoxins that are becoming more widely distributed due to increased global temperatures and climate change. Microcystin-leucine-arginine (MC-LR) is the most potent and most common variant, with a guideline limit of 1 μg/l in drinking water. We previously developed a novel avian single-chain fragment variable (scFv), designated 2G1, for use in an optical-planar waveguide detection system for microcystin determination. This current work investigates interactions between 2G1 and MC-LR at the molecular level through modelling with an avian antibody template and molecular docking by AutoDock Vina to identify key amino acid (AA) residues involved. These potential AA interactions were investigated in vitro by targeted mutagenesis, specifically, by alanine scanning mutations. Glutamic acid (E) was found to play a critical role in the 2G1-MC-LR binding interaction, with the heavy chain glutamic acid (E) 102 (H-E102) forming direct bonds with the arginine (R) residue of MC-LR. In addition, alanine mutation of light chain residue aspartic acid 57 (L-D57) led to an improvement in antigen-binding observed using enzyme-linked immunosorbent assay (ELISA), and was confirmed by surface plasmon resonance (SPR). This work will contribute to improving the binding of recombinant anti-MC-LR to its antigen and aid in the development of a higher sensitivity harmful algal toxin diagnostic.
期刊介绍:
Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.