{"title":"投影域迭代估计不可靠的测量。","authors":"Gengsheng L Zeng","doi":"10.1186/s42492-020-00054-w","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the beam-hardening effect of the broad energy spectrum of the X-ray source in computed tomography, the reconstructed images usually suffer from severe artifacts when metallic objects are being imaged. Metal artifact correction methods are usually sophisticated and not practical, especially in some non-medical applications, in which the linear attenuation coefficients are unknown. This paper suggests a simple and effective algorithm to estimate the unreliable measurements. The proposed algorithm is an iterative algorithm, in which the iteration is performed in the projection domain, while the objective function is set up in the image domain. The final image is reconstructed with the conventional filtered backprojection algorithm. The feasibility of the proposed method is verified with airport bags that contain some unknown metals.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":"3 1","pages":"16"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42492-020-00054-w","citationCount":"2","resultStr":"{\"title\":\"Projection-domain iteration to estimate unreliable measurements.\",\"authors\":\"Gengsheng L Zeng\",\"doi\":\"10.1186/s42492-020-00054-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the beam-hardening effect of the broad energy spectrum of the X-ray source in computed tomography, the reconstructed images usually suffer from severe artifacts when metallic objects are being imaged. Metal artifact correction methods are usually sophisticated and not practical, especially in some non-medical applications, in which the linear attenuation coefficients are unknown. This paper suggests a simple and effective algorithm to estimate the unreliable measurements. The proposed algorithm is an iterative algorithm, in which the iteration is performed in the projection domain, while the objective function is set up in the image domain. The final image is reconstructed with the conventional filtered backprojection algorithm. The feasibility of the proposed method is verified with airport bags that contain some unknown metals.</p>\",\"PeriodicalId\":52384,\"journal\":{\"name\":\"Visual Computing for Industry, Biomedicine, and Art\",\"volume\":\"3 1\",\"pages\":\"16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s42492-020-00054-w\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Computing for Industry, Biomedicine, and Art\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-020-00054-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-020-00054-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Projection-domain iteration to estimate unreliable measurements.
Due to the beam-hardening effect of the broad energy spectrum of the X-ray source in computed tomography, the reconstructed images usually suffer from severe artifacts when metallic objects are being imaged. Metal artifact correction methods are usually sophisticated and not practical, especially in some non-medical applications, in which the linear attenuation coefficients are unknown. This paper suggests a simple and effective algorithm to estimate the unreliable measurements. The proposed algorithm is an iterative algorithm, in which the iteration is performed in the projection domain, while the objective function is set up in the image domain. The final image is reconstructed with the conventional filtered backprojection algorithm. The feasibility of the proposed method is verified with airport bags that contain some unknown metals.