{"title":"基于改进人工免疫系统算法的多智能体药物特性预测本体模型。","authors":"Galina Samigulina, Zarina Samigulina","doi":"10.1186/s12976-020-00130-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Currently, due to the huge progress in the field of information technologies and computer equipment, it is important to use modern approaches of artificial intelligence in order to process extensive chemical information at creating new drugs with desired properties. The interdisciplinary of research creates additional difficulties in creating new drugs. Currently, there are no universal algorithms and software for predicting the \"structure-property\" dependence of drug compounds that can take into account the needs of specialists in this field. In this regard, the development of a modern Smart-system based on the promising bio-inspired approach of artificial immune systems for predicting the structure-property dependence of drug compounds is relevant. The aim of this work is to develop a multi-agent Smart-system for predicting the \"structure-property\" dependence of drug compounds using the ontological approach and modified algorithms of artificial immune systems using the example of drug compounds of the sulfonamide group. The proposed system makes it possible to increase the accuracy of prediction models of the \"structure-property\" dependence, to reduce the time and financial costs for obtaining candidate drug compounds.</p><p><strong>Methods: </strong>During the creation of a Smart-system, there are used multi-agent and ontological approaches, which allow to structure input and output data, optimally to distribute computing resources and to coordinate the work of the system. As a promising approach for processing a large amount of chemical information, extracting informative descriptors and for the creation of an optimal data set, as well as further predicting the properties of medicinal compounds, there are considered modified algorithms of artificial immune systems and various algorithms of artificial intelligence.</p><p><strong>Results: </strong>There was developed an ontological model of a multi-agent Smart-system. There are presented the results of the «structure-property» dependence simulation based on a modified grey wolf optimization algorithm and artificial immune systems. During the simulation, there was used information from the Mol-Instincts sulfonamide descriptor database.</p><p><strong>Conclusion: </strong>The developed multi-agent Smart-system using ontological models allows visually to present the structure and interrelationships of agents functioning, which greatly facilitates the development of software and reduces time and financial costs during the development of new drugs.</p>","PeriodicalId":51195,"journal":{"name":"Theoretical Biology and Medical Modelling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12976-020-00130-x","citationCount":"2","resultStr":"{\"title\":\"Ontological model of multi-agent Smart-system for predicting drug properties based on modified algorithms of artificial immune systems.\",\"authors\":\"Galina Samigulina, Zarina Samigulina\",\"doi\":\"10.1186/s12976-020-00130-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Currently, due to the huge progress in the field of information technologies and computer equipment, it is important to use modern approaches of artificial intelligence in order to process extensive chemical information at creating new drugs with desired properties. The interdisciplinary of research creates additional difficulties in creating new drugs. Currently, there are no universal algorithms and software for predicting the \\\"structure-property\\\" dependence of drug compounds that can take into account the needs of specialists in this field. In this regard, the development of a modern Smart-system based on the promising bio-inspired approach of artificial immune systems for predicting the structure-property dependence of drug compounds is relevant. The aim of this work is to develop a multi-agent Smart-system for predicting the \\\"structure-property\\\" dependence of drug compounds using the ontological approach and modified algorithms of artificial immune systems using the example of drug compounds of the sulfonamide group. The proposed system makes it possible to increase the accuracy of prediction models of the \\\"structure-property\\\" dependence, to reduce the time and financial costs for obtaining candidate drug compounds.</p><p><strong>Methods: </strong>During the creation of a Smart-system, there are used multi-agent and ontological approaches, which allow to structure input and output data, optimally to distribute computing resources and to coordinate the work of the system. As a promising approach for processing a large amount of chemical information, extracting informative descriptors and for the creation of an optimal data set, as well as further predicting the properties of medicinal compounds, there are considered modified algorithms of artificial immune systems and various algorithms of artificial intelligence.</p><p><strong>Results: </strong>There was developed an ontological model of a multi-agent Smart-system. There are presented the results of the «structure-property» dependence simulation based on a modified grey wolf optimization algorithm and artificial immune systems. During the simulation, there was used information from the Mol-Instincts sulfonamide descriptor database.</p><p><strong>Conclusion: </strong>The developed multi-agent Smart-system using ontological models allows visually to present the structure and interrelationships of agents functioning, which greatly facilitates the development of software and reduces time and financial costs during the development of new drugs.</p>\",\"PeriodicalId\":51195,\"journal\":{\"name\":\"Theoretical Biology and Medical Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12976-020-00130-x\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Biology and Medical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12976-020-00130-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology and Medical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12976-020-00130-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Ontological model of multi-agent Smart-system for predicting drug properties based on modified algorithms of artificial immune systems.
Background: Currently, due to the huge progress in the field of information technologies and computer equipment, it is important to use modern approaches of artificial intelligence in order to process extensive chemical information at creating new drugs with desired properties. The interdisciplinary of research creates additional difficulties in creating new drugs. Currently, there are no universal algorithms and software for predicting the "structure-property" dependence of drug compounds that can take into account the needs of specialists in this field. In this regard, the development of a modern Smart-system based on the promising bio-inspired approach of artificial immune systems for predicting the structure-property dependence of drug compounds is relevant. The aim of this work is to develop a multi-agent Smart-system for predicting the "structure-property" dependence of drug compounds using the ontological approach and modified algorithms of artificial immune systems using the example of drug compounds of the sulfonamide group. The proposed system makes it possible to increase the accuracy of prediction models of the "structure-property" dependence, to reduce the time and financial costs for obtaining candidate drug compounds.
Methods: During the creation of a Smart-system, there are used multi-agent and ontological approaches, which allow to structure input and output data, optimally to distribute computing resources and to coordinate the work of the system. As a promising approach for processing a large amount of chemical information, extracting informative descriptors and for the creation of an optimal data set, as well as further predicting the properties of medicinal compounds, there are considered modified algorithms of artificial immune systems and various algorithms of artificial intelligence.
Results: There was developed an ontological model of a multi-agent Smart-system. There are presented the results of the «structure-property» dependence simulation based on a modified grey wolf optimization algorithm and artificial immune systems. During the simulation, there was used information from the Mol-Instincts sulfonamide descriptor database.
Conclusion: The developed multi-agent Smart-system using ontological models allows visually to present the structure and interrelationships of agents functioning, which greatly facilitates the development of software and reduces time and financial costs during the development of new drugs.
期刊介绍:
Theoretical Biology and Medical Modelling is an open access peer-reviewed journal adopting a broad definition of "biology" and focusing on theoretical ideas and models associated with developments in biology and medicine. Mathematicians, biologists and clinicians of various specialisms, philosophers and historians of science are all contributing to the emergence of novel concepts in an age of systems biology, bioinformatics and computer modelling. This is the field in which Theoretical Biology and Medical Modelling operates. We welcome submissions that are technically sound and offering either improved understanding in biology and medicine or progress in theory or method.