具有局部Lipschitz驱动的lsamv驱动BSDEs的存在唯一性和Malliavin可微性。

Stochastics (Abingdon, England : 2005) Pub Date : 2019-06-12 eCollection Date: 2020-01-01 DOI:10.1080/17442508.2019.1626859
Christel Geiss, Alexander Steinicke
{"title":"具有局部Lipschitz驱动的lsamv驱动BSDEs的存在唯一性和Malliavin可微性。","authors":"Christel Geiss,&nbsp;Alexander Steinicke","doi":"10.1080/17442508.2019.1626859","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate conditions for solvability and Malliavin differentiability of backward stochastic differential equations driven by a Lévy process. In particular, we are interested in generators which satisfy a local Lipschitz condition in the <i>Z</i> and <i>U</i> variable. This includes settings of linear, quadratic and exponential growths in those variables. Extending an idea of Cheridito and Nam to the jump setting and applying comparison theorems for Lévy-driven BSDEs, we show existence, uniqueness, boundedness and Malliavin differentiability of a solution. The pivotal assumption to obtain these results is a boundedness condition on the terminal value <i>ξ</i> and its Malliavin derivative <math><mi>D</mi> <mi>ξ</mi></math> . Furthermore, we extend existence and uniqueness theorems to cases where the generator is not even locally Lipschitz in <i>U</i>. BSDEs of the latter type find use in exponential utility maximization.</p>","PeriodicalId":93054,"journal":{"name":"Stochastics (Abingdon, England : 2005)","volume":"92 3","pages":"418-453"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17442508.2019.1626859","citationCount":"3","resultStr":"{\"title\":\"Existence, uniqueness and Malliavin differentiability of Lévy-driven BSDEs with locally Lipschitz driver.\",\"authors\":\"Christel Geiss,&nbsp;Alexander Steinicke\",\"doi\":\"10.1080/17442508.2019.1626859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate conditions for solvability and Malliavin differentiability of backward stochastic differential equations driven by a Lévy process. In particular, we are interested in generators which satisfy a local Lipschitz condition in the <i>Z</i> and <i>U</i> variable. This includes settings of linear, quadratic and exponential growths in those variables. Extending an idea of Cheridito and Nam to the jump setting and applying comparison theorems for Lévy-driven BSDEs, we show existence, uniqueness, boundedness and Malliavin differentiability of a solution. The pivotal assumption to obtain these results is a boundedness condition on the terminal value <i>ξ</i> and its Malliavin derivative <math><mi>D</mi> <mi>ξ</mi></math> . Furthermore, we extend existence and uniqueness theorems to cases where the generator is not even locally Lipschitz in <i>U</i>. BSDEs of the latter type find use in exponential utility maximization.</p>\",\"PeriodicalId\":93054,\"journal\":{\"name\":\"Stochastics (Abingdon, England : 2005)\",\"volume\":\"92 3\",\"pages\":\"418-453\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17442508.2019.1626859\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics (Abingdon, England : 2005)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2019.1626859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics (Abingdon, England : 2005)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17442508.2019.1626859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了一类lsamvy过程驱动的倒向随机微分方程的可解性和Malliavin可微性的条件。特别地,我们感兴趣的是在Z和U变量中满足局部Lipschitz条件的生成器。这包括这些变量的线性、二次和指数增长的设置。将Cheridito和Nam的思想推广到跳跃设置中,并应用比较定理证明了解的存在性、唯一性、有界性和Malliavin可微性。得到这些结果的关键假设是终端值ξ及其Malliavin导数D ξ的有界条件。进一步,我们将存在唯一性定理推广到u中生成器甚至不是局部Lipschitz的情况,后者的BSDEs在指数效用最大化中得到了应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence, uniqueness and Malliavin differentiability of Lévy-driven BSDEs with locally Lipschitz driver.

We investigate conditions for solvability and Malliavin differentiability of backward stochastic differential equations driven by a Lévy process. In particular, we are interested in generators which satisfy a local Lipschitz condition in the Z and U variable. This includes settings of linear, quadratic and exponential growths in those variables. Extending an idea of Cheridito and Nam to the jump setting and applying comparison theorems for Lévy-driven BSDEs, we show existence, uniqueness, boundedness and Malliavin differentiability of a solution. The pivotal assumption to obtain these results is a boundedness condition on the terminal value ξ and its Malliavin derivative D ξ . Furthermore, we extend existence and uniqueness theorems to cases where the generator is not even locally Lipschitz in U. BSDEs of the latter type find use in exponential utility maximization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信