左心房附属物统计形状建模中的对齐会影响中风预测吗?

Computing in cardiology Pub Date : 2019-01-01 Epub Date: 2020-02-24 DOI:10.22489/cinc.2019.200
Riddhish Bhalodia, Archanasri Subramanian, Alan Morris, Joshua Cates, Ross Whitaker, Evgueni Kholmovski, Nassir Marrouche, Shireen Elhabian
{"title":"左心房附属物统计形状建模中的对齐会影响中风预测吗?","authors":"Riddhish Bhalodia,&nbsp;Archanasri Subramanian,&nbsp;Alan Morris,&nbsp;Joshua Cates,&nbsp;Ross Whitaker,&nbsp;Evgueni Kholmovski,&nbsp;Nassir Marrouche,&nbsp;Shireen Elhabian","doi":"10.22489/cinc.2019.200","DOIUrl":null,"url":null,"abstract":"<p><p>Evidence suggests that the shape of left atrium appendages (LAA) is a primary indicator in predicting stroke for patients diagnosed with atrial fibrillation (AF). Statistical shape modeling tools used to represent (i.e., parameterize) the underlying LAA variability are of crucial importance to learn shape-based predictors of stroke. Most shape modeling techniques use some form of alignment either as a data pre-processing step or during the modeling step. However, the LAA is a joint anatomy along with left atrium (LA), and the relative position and alignment plays a crucial part in determining risk of stroke. In this paper, we explore different alignment strategies for statistical shape modeling and how each strategy affects the stroke prediction capability. This allows for identifying a unified approach of alignment while analyzing the LAA anatomy for stroke. Here, we study three different alignment strategies, (i) global alignment, (ii) global translational alignment and (iii) cluster based alignment. Our results show that alignment strategies that take into account LAA orientation, i.e., (ii), or the inherent natural clustering of the population under study, i.e., (iii), provide significant improvement over global alignment in both qualitative as well as quantitative measures.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338006/pdf/nihms-1603164.pdf","citationCount":"0","resultStr":"{\"title\":\"Does Alignment in Statistical Shape Modeling of Left Atrium Appendage Impact Stroke Prediction?\",\"authors\":\"Riddhish Bhalodia,&nbsp;Archanasri Subramanian,&nbsp;Alan Morris,&nbsp;Joshua Cates,&nbsp;Ross Whitaker,&nbsp;Evgueni Kholmovski,&nbsp;Nassir Marrouche,&nbsp;Shireen Elhabian\",\"doi\":\"10.22489/cinc.2019.200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evidence suggests that the shape of left atrium appendages (LAA) is a primary indicator in predicting stroke for patients diagnosed with atrial fibrillation (AF). Statistical shape modeling tools used to represent (i.e., parameterize) the underlying LAA variability are of crucial importance to learn shape-based predictors of stroke. Most shape modeling techniques use some form of alignment either as a data pre-processing step or during the modeling step. However, the LAA is a joint anatomy along with left atrium (LA), and the relative position and alignment plays a crucial part in determining risk of stroke. In this paper, we explore different alignment strategies for statistical shape modeling and how each strategy affects the stroke prediction capability. This allows for identifying a unified approach of alignment while analyzing the LAA anatomy for stroke. Here, we study three different alignment strategies, (i) global alignment, (ii) global translational alignment and (iii) cluster based alignment. Our results show that alignment strategies that take into account LAA orientation, i.e., (ii), or the inherent natural clustering of the population under study, i.e., (iii), provide significant improvement over global alignment in both qualitative as well as quantitative measures.</p>\",\"PeriodicalId\":72683,\"journal\":{\"name\":\"Computing in cardiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338006/pdf/nihms-1603164.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing in cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/cinc.2019.200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/2/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2019.200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有证据表明,左心房附属物(LAA)的形状是预测房颤(AF)患者卒中的主要指标。用于表示(即参数化)潜在LAA可变性的统计形状建模工具对于学习基于形状的中风预测因子至关重要。大多数形状建模技术在数据预处理步骤或建模步骤中使用某种形式的对齐。然而,左心房(LA)与左心房(LAA)是一个关节解剖结构,其相对位置和排列在确定卒中风险方面起着至关重要的作用。在本文中,我们探讨了统计形状建模的不同对齐策略以及每种策略如何影响笔画预测能力。这允许在分析中风的LAA解剖时确定统一的对齐方法。在这里,我们研究了三种不同的对齐策略,(i)全球对齐,(ii)全球平移对齐和(iii)基于集群的对齐。我们的研究结果表明,考虑LAA取向(即(ii))或被研究群体固有的自然聚类(即(iii))的比对策略,在定性和定量措施上都比全球比对有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Does Alignment in Statistical Shape Modeling of Left Atrium Appendage Impact Stroke Prediction?

Does Alignment in Statistical Shape Modeling of Left Atrium Appendage Impact Stroke Prediction?

Does Alignment in Statistical Shape Modeling of Left Atrium Appendage Impact Stroke Prediction?

Does Alignment in Statistical Shape Modeling of Left Atrium Appendage Impact Stroke Prediction?

Evidence suggests that the shape of left atrium appendages (LAA) is a primary indicator in predicting stroke for patients diagnosed with atrial fibrillation (AF). Statistical shape modeling tools used to represent (i.e., parameterize) the underlying LAA variability are of crucial importance to learn shape-based predictors of stroke. Most shape modeling techniques use some form of alignment either as a data pre-processing step or during the modeling step. However, the LAA is a joint anatomy along with left atrium (LA), and the relative position and alignment plays a crucial part in determining risk of stroke. In this paper, we explore different alignment strategies for statistical shape modeling and how each strategy affects the stroke prediction capability. This allows for identifying a unified approach of alignment while analyzing the LAA anatomy for stroke. Here, we study three different alignment strategies, (i) global alignment, (ii) global translational alignment and (iii) cluster based alignment. Our results show that alignment strategies that take into account LAA orientation, i.e., (ii), or the inherent natural clustering of the population under study, i.e., (iii), provide significant improvement over global alignment in both qualitative as well as quantitative measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信