{"title":"慢性丙型肝炎感染中胰岛素分泌受损:p38δ mapk蛋白激酶d -高尔基复合体轴的促进作用","authors":"Parimala Narne","doi":"10.1042/CS20200686","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatitis C virus (HCV) infection and chronic hepatitis C (CHC) are associated with a measurable risk of insulin resistance (IR)/impaired glucose tolerance (IGT)/diabetes mellitus (DM). While loss of hepatic endocrine function contributes to liver cirrhosis in diabetic patients, onset and progression of IR/IGT to diabetes and exacerbation of incident hyperglycemia are ostensibly linked with chronic HCV infection. In this regard, the study by Chen J et al. appearing in Clinical Science (2020) (134(5) https://doi.org/10.1042/CS20190900) attempts to understand the mechanisms underlying the savaging effects of chronic HCV infection on insulin-producing pancreatic β-cells and hence diabetic onset. The study investigated the role of mitogen-activated protein kinase (MAPK) p38δ-protein kinase D (PKD)-golgi complex axis in impacting insulin exocytosis. It was inferred that an insulin secretory defect of pancreatic β-cells, owing to disrupted insulin exocytosis, to an extent explains β-cell dysfunction in HCV-infected or CHC milieu. HCV infection negatively regulates first-phase and second-phase insulin secretion by impinging on PKD-dependent insulin secretory granule fission at trans-golgi network and insulin secretory vesicle membrane fusion events. This commentary highlights the study in question, that deciphered the contribution of p38δ MAPK-PKD-golgi complex axis to β-cell dysfunction in CHC milieu. This pivotal axis proffers a formidable therapeutic opportunity for alleviation of double burden of glucose abnormalities/DM and CHC.</p>","PeriodicalId":519494,"journal":{"name":"Clinical Science (London, England : 1979)","volume":" ","pages":"1449-1456"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impaired insulin exocytosis in chronic hepatitis C infection: contributory role of p38δ MAPK-protein kinase D-golgi complex axis.\",\"authors\":\"Parimala Narne\",\"doi\":\"10.1042/CS20200686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatitis C virus (HCV) infection and chronic hepatitis C (CHC) are associated with a measurable risk of insulin resistance (IR)/impaired glucose tolerance (IGT)/diabetes mellitus (DM). While loss of hepatic endocrine function contributes to liver cirrhosis in diabetic patients, onset and progression of IR/IGT to diabetes and exacerbation of incident hyperglycemia are ostensibly linked with chronic HCV infection. In this regard, the study by Chen J et al. appearing in Clinical Science (2020) (134(5) https://doi.org/10.1042/CS20190900) attempts to understand the mechanisms underlying the savaging effects of chronic HCV infection on insulin-producing pancreatic β-cells and hence diabetic onset. The study investigated the role of mitogen-activated protein kinase (MAPK) p38δ-protein kinase D (PKD)-golgi complex axis in impacting insulin exocytosis. It was inferred that an insulin secretory defect of pancreatic β-cells, owing to disrupted insulin exocytosis, to an extent explains β-cell dysfunction in HCV-infected or CHC milieu. HCV infection negatively regulates first-phase and second-phase insulin secretion by impinging on PKD-dependent insulin secretory granule fission at trans-golgi network and insulin secretory vesicle membrane fusion events. This commentary highlights the study in question, that deciphered the contribution of p38δ MAPK-PKD-golgi complex axis to β-cell dysfunction in CHC milieu. This pivotal axis proffers a formidable therapeutic opportunity for alleviation of double burden of glucose abnormalities/DM and CHC.</p>\",\"PeriodicalId\":519494,\"journal\":{\"name\":\"Clinical Science (London, England : 1979)\",\"volume\":\" \",\"pages\":\"1449-1456\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Science (London, England : 1979)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1042/CS20200686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Science (London, England : 1979)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20200686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impaired insulin exocytosis in chronic hepatitis C infection: contributory role of p38δ MAPK-protein kinase D-golgi complex axis.
Hepatitis C virus (HCV) infection and chronic hepatitis C (CHC) are associated with a measurable risk of insulin resistance (IR)/impaired glucose tolerance (IGT)/diabetes mellitus (DM). While loss of hepatic endocrine function contributes to liver cirrhosis in diabetic patients, onset and progression of IR/IGT to diabetes and exacerbation of incident hyperglycemia are ostensibly linked with chronic HCV infection. In this regard, the study by Chen J et al. appearing in Clinical Science (2020) (134(5) https://doi.org/10.1042/CS20190900) attempts to understand the mechanisms underlying the savaging effects of chronic HCV infection on insulin-producing pancreatic β-cells and hence diabetic onset. The study investigated the role of mitogen-activated protein kinase (MAPK) p38δ-protein kinase D (PKD)-golgi complex axis in impacting insulin exocytosis. It was inferred that an insulin secretory defect of pancreatic β-cells, owing to disrupted insulin exocytosis, to an extent explains β-cell dysfunction in HCV-infected or CHC milieu. HCV infection negatively regulates first-phase and second-phase insulin secretion by impinging on PKD-dependent insulin secretory granule fission at trans-golgi network and insulin secretory vesicle membrane fusion events. This commentary highlights the study in question, that deciphered the contribution of p38δ MAPK-PKD-golgi complex axis to β-cell dysfunction in CHC milieu. This pivotal axis proffers a formidable therapeutic opportunity for alleviation of double burden of glucose abnormalities/DM and CHC.